Skip to main content

Osteotomies: Advanced and Complex Techniques

  • Chapter
ESSKA Instructional Course Lecture Book

Abstract

We started performing precise surgery based upon CT plans in the last century – the first embodiment of this approach was a robotic assistant built for total knee replacement, the “Acrobot” [1]. Abundant evidence now exists to confirm that assistive technologies enable surgeons to achieve their preoperative goals [2]. The concept of planned surgery is therefore not novel. Patient-matched instruments share several key elements with the robotic platform, and these formed the basis of this current project. The essential elements include image segmentation, planning, and registration. We applied the know-how of these dimensions to design and build patient-matched guides for a range of tasks using biocompatible polymer 3D printers. Having established a workflow for arthroplasty, the adaptation of the same principles to osteotomy was a short step, requiring software to be developed to deliver semiautomated useful information regarding limb segment alignment and the shapes of bones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 149.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jakopec M, Harris SJ, Rodriguez y Baena F, Gomes P, Cobb J, Davies BL. The first clinical application of a “hands-on” robotic knee surgery system. Comput Aided Surg. 2001;6(6):329–39.

    Article  CAS  Google Scholar 

  2. Cobb JP, Kannan V, Brust K, Thevendran G. Navigation reduces the learning curve in resurfacing total hip arthroplasty. Clin Orthop Relat Res. 2007;463:90–7.

    PubMed  Google Scholar 

  3. Henckel J, Richards R, Lozhkin K, Harris S, Rodriguez y Baena FM, ARW B, et al. Very low-dose computed tomography for planning and outcome measurement in knee replacement. The imperial knee protocol. J Bone Joint Surg Br. 2006;88(11):1513–8.

    Article  CAS  Google Scholar 

  4. Duffell LD, Mushtaq J, Masjedi M, Cobb JP. The knee adduction angle of the osteo-arthritic knee: a comparison of 3D supine, static and dynamic alignment. Knee. 2014;21(6):1096–100.

    Article  Google Scholar 

  5. Victor JMK, Bassens D, Bellemans J, Gürsu S, Dhollander AAM, Verdonk PCM. Constitutional varus does not affect joint line orientation in the coronal plane knee. Clin Orthop Relat Res. 2014;472(1):98–104.

    Article  Google Scholar 

  6. Bellemans J, Colyn W, Vandenneucker H, Victor J. The Chitranjan Ranawat Award: is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin Orthop Relat Res. 2012;470(1):45–53.

    Article  Google Scholar 

  7. Cooke TD, Scudamore RA, Bryant JT, Sorbie C, Siu D, Fisher B. A quantitative approach to radiography of the lower limb. Principles and applications. J Bone Joint Surg Br. 1991;73(5):715–20.

    Article  CAS  Google Scholar 

  8. Sharma L, Song J, Dunlop D, Felson D, Lewis CE, Segal N, et al. Varus and valgus alignment and incident and progressive knee osteoarthritis. Ann Rheum Dis. 2010;69(11):1940–5.

    Article  Google Scholar 

  9. Felson DT, Jordan JM, Kington RS, Lane NE, Nevitt MC, Zhang Y, Sowers M, et al. Osteoarthritis: new insights. Part 1: The disease and its risk factors. Ann Intern Med. 2000;133(8):637–9.

    Article  Google Scholar 

  10. Felson DT, Naimark A, Anderson J, Kazis L, Castelli W, Meenan RF. The prevalence of knee osteoarthritis in the elderly. The Framingham osteoarthritis study. Arthritis Rheum. 1987;30(8):914–8.

    Article  CAS  Google Scholar 

  11. Brouwer RW, Jakma TSC, SMA B-Z, Verhagen AP, Verhaar J, et al. Osteotomy for treating knee osteoarthritis. Cochrane Database Syst Rev. 2005;1:CD004019.

    Google Scholar 

  12. Agneskirchner JD, Hurschler C, Wrann CD, Lobenhoffer P. The effects of valgus medial opening wedge high tibial osteotomy on articular cartilage pressure of the knee: a biomechanical study. Arthroscopy. 2007;23(8):852–61.

    Article  Google Scholar 

  13. Cooke T, Pichora D, Siu D, Scudamore R, Bryant J. Surgical implications of varus deformity of the knee with obliquity of joint surfaces. J Bone Joint Surg Br. 1989;71-B(4):560.

    Article  Google Scholar 

  14. Babis GC, An K-N, Chao EYS, Rand JA, Sim FH. Double level osteotomy of the knee: a method to retain joint-line obliquity. Clinical results. J Bone Joint Surg Am. 2002;84-A(8):1380–8.

    Article  Google Scholar 

  15. Cooke TD, Sled EA, Scudamore RA. Frontal plane knee alignment: a call for standardized measurement. J Rheumatol. 2007;34(9):1796.

    PubMed  Google Scholar 

  16. Paley D. Malalignment and malorientation in the frontal plane. In:Principles of deformity correction. Berlin: Springer; 2002. p. 19–30.

    Chapter  Google Scholar 

  17. Paley D. Normal lower limb alignment and joint orientation. In: Principles of deformity correction. Berlin: Springer; 2002. p. 1–18

    Chapter  Google Scholar 

  18. Saithna A, Kundra R, Modi CS, Getgood A, Spalding T. Distal femoral varus osteotomy for lateral compartment osteoarthritis in the valgus knee. A systematic review of the literature. Open Orthop J. 2012;6:313–9.

    Article  Google Scholar 

  19. Rosso F, Margheritini F. Distal femoral osteotomy. Curr Rev Muscoskelet Med. 2014;7(4):302–11.

    Article  Google Scholar 

  20. Felson DT, Niu J, Gross KD, Englund M, Sharma L, Cooke TD, et al. Valgus malalignment is a risk factor for lateral knee osteoarthritis incidence and progression: findings from the multicenter osteoarthritis study and the osteoarthritis initiative. Arthritis Rheum. 2013;65(2):355–62.

    Article  Google Scholar 

  21. Nelissen EM, van Langelaan EJ, Nelissen RGHH. Stability of medial opening wedge high tibial osteotomy: a failure analysis. Int Orthop. 2010;34(2):217–23.

    Article  CAS  Google Scholar 

  22. Chahla J, Mitchell JJ, Liechti DJ, Moatshe G, Menge TJ, Dean CS, et al. Opening- and closing-wedge distal femoral osteotomy: a systematic review of outcomes for isolated lateral compartment osteoarthritis. Orthop J Sports Med. 2016;4(6):2325967116649901.

    PubMed  PubMed Central  Google Scholar 

  23. W-Dahl A, Robertsson O, Lidgren L. Surgery for knee osteoarthritis in younger patients. Acta Orthop. 2010;81(2):161–4.

    Article  Google Scholar 

  24. Spahn G, Hofmann GO, von Engelhardt LV, Li M, Neubauer H, Klinger HM. The impact of a high tibial valgus osteotomy and unicondylar medial arthroplasty on the treatment for knee osteoarthritis: a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2013;21(1):96–112.

    Article  Google Scholar 

  25. Floerkemeier S, Staubli AE, Schroeter S, Goldhahn S, Lobenhoffer P. Outcome after high tibial open-wedge osteotomy: a retrospective evaluation of 533 patients. Knee Surg Sports Traumatol Arthrosc. 2013;21(1):170–80.

    Article  Google Scholar 

  26. Lobenhoffer P, Agneskirchner J, Zoch W. Die öffnende valgisierende osteotomie der proximalen tibia mit fixation durch einen medialen plattenfixateur. Orthopade. 2004;33:153–60.

    Article  CAS  Google Scholar 

  27. Brinkman J-M, Lobenhoffer P, Agneskirchner JD, Staubli AE, Wymenga AB, van Heerwaarden RJ.Osteotomies around the knee: patient selection, stability of fixation and bone healing in high tibial osteotomies. J Bone Joint Surg Br. 2008;90-B(12):1548–57.

    Article  Google Scholar 

  28. Han SB, Lee DH, Shetty GM, Chae DJ, Song JG, Nha KW. A “safe zone” in medial open-wedge high tibia osteotomy to prevent lateral cortex fracture. Knee Surg Sports Traumatol Arthrosc. 2013;21(1):90–5.

    Article  CAS  Google Scholar 

  29. Vanadurongwan B, Siripisitsak T, Sudjai N, Harnroongroj T. The anatomical safe zone for medial opening oblique wedge high tibial osteotomy. Singap Med J. 2013;54(2):102.

    Article  Google Scholar 

  30. van Heerwaarden R, Najfeld M, Brinkman M, Seil R, Madry H, Pape D. Wedge volume and osteotomy surface depend on surgical technique for distal femoral osteotomy. Knee Surg Sports Traumatol Arthrosc. 2013;21(1):206–12.

    Article  Google Scholar 

  31. Brinkman J-M, Hurschler C, Agneskirchner JD, Freiling D, van Heerwaarden RJ. Axial and torsional stability of supracondylar femur osteotomies: biomechanical comparison of the stability of five different plate and osteotomy configurations. Knee Surg Sports Traumatol Arthrosc. 2011;19(4):579–87.

    Article  Google Scholar 

  32. Hofmann S, Lobenhoffer P, Staubli A, Van Heerwaarden R. Osteotomien am kniegelenk bei monokompartmentarthrose. Orthopade. 2009;38(8):755–70.

    Article  CAS  Google Scholar 

  33. Bonasia DE, Governale G, Spolaore S, Rossi R, Amendola A. High tibial osteotomy. Curr Rev Muscoskelet Med. 2014;7:292.

    Article  Google Scholar 

  34. Sanna M, Sanna C, Caputo F, Piu G, Salvi M. Surgical approaches in total knee arthroplasty. Joints. 2013;1(2):34–44.

    PubMed  PubMed Central  Google Scholar 

  35. Farouk O, Krettek C, Miclau T, Schandelmaier P, Guy P, Tscherne H. Minimally invasive plate osteosynthesis and vascularity: preliminary results of a cadaver injection study. Injury. 1997;28:A7–12.

    Article  Google Scholar 

  36. Farouk O, Krettek C, Miclau T, Schandelmaier P, Tscherne H. The topography of the perforating vessels of the deep femoral artery. Clin Orthop Relat Res. 1999;368:255–9.

    Article  Google Scholar 

  37. Farouk O, Krettek C, Miclau T, Schandelmaier P, Tscherne H. Effects of percutaneous and conventional plating techniques on the blood supply to the femur. Arch Orthop Trauma Surg. 1998;117(8):438–41.

    Article  CAS  Google Scholar 

  38. Amis AA. Biomechanics of high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2013;21(1):197–205.

    Article  Google Scholar 

  39. Marti RK, van Heerwaarden RJ. Osteotomies for posttraumatic deformities. Stuttgart: George Thieme Verlag; 2008. 704p.

    Google Scholar 

  40. Kerkhoffs GMM, Rademakers MV, Altena M, Marti RK. Combined intra-articular and varus opening wedge osteotomy for lateral depression and valgus malunion of the proximal part of the tibia. J Bone Joint Surg Am. 2008;90(6):1252–7.

    Article  Google Scholar 

  41. Dejour D, Saffarini M, Demey G, Baverel L. Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture. Knee Surg Sports Traumatol Arthrosc. 2015;23(10):2846–52.

    Article  Google Scholar 

  42. Hohmann E, Bryant A, Reaburn P, Tetsworth K. Is there a correlation between posterior tibial slope and non-contact anterior cruciate ligament injuries? Knee Surg Sports Traumatol Arthrosc. 2011;19(Suppl 1):S109–14.

    Article  Google Scholar 

  43. Li Y, Hong L, Feng H, Wang Q, Zhang J, Song G, et al. Posterior tibial slope influences static anterior tibial translation in anterior cruciate ligament reconstruction: a minimum 2-year follow-up study. Am J Sports Med. 2014;42(4):927–33.

    Article  Google Scholar 

  44. Dejour H, Bonnin M. Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg Br. 1994;76(5):745–9.

    Article  CAS  Google Scholar 

  45. Torzilli PA, Deng X, Warren RF. The effect of joint-compressive load and quadriceps muscle force on knee motion in the intact and anterior cruciate ligament-sectioned knee. Am J Sports Med. 1994;22(1):105–12.

    Article  CAS  Google Scholar 

  46. Giffin JR, Vogrin TM, Zantop T, Woo SLY, Harner CD. Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med. 2004;32(2):376–82.

    Article  Google Scholar 

  47. Rodner CM, Adams DJ, Diaz-Doran V, Tate JP, Santangelo SA, Mazzocca AD, et al. Medial opening wedge tibial osteotomy and the sagittal plane: the effect of increasing tibial slope on tibiofemoral contact pressure. Am J Sports Med. 2006;34(9):1431–41.

    Article  Google Scholar 

  48. Crawford MD, Diehl LH, Amendola A. Surgical management and treatment of the anterior cruciate ligament-deficient knee with malalignment. Clin Sports Med. 2017;36(1):119–33.

    Article  Google Scholar 

  49. Feucht MJ, Mauro CS, Brucker PU, Imhoff AB, Hinterwimmer S. The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc. 2013;21(1):134–45.

    Article  Google Scholar 

  50. Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slauterbeck JR, Schutt RC, et al. Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med. 2010;38(1):54–62.

    Article  Google Scholar 

  51. Hudek R, Fuchs B, Regenfelder F, Koch PP. Is noncontact ACL injury associated with the posterior tibial and meniscal slope? Clin Orthop Relat Res. 2011;469(8):2377–84.

    Article  CAS  Google Scholar 

  52. Rahnemai-Azar AA, Yaseen Z, van Eck CF, Irrgang JJ, Fu FH, Musahl V. Increased lateral tibial plateau slope predisposes male college football players to anterior cruciate ligament injury. J Bone Joint Surg Am. 2016;98(12):1001–6.

    Article  Google Scholar 

  53. Stijak L, Herzog RF, Schai P. Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? A case-control study. Knee Surg Sports Traumatol Arthrosc. 2008;16(2):112–7.

    Article  Google Scholar 

  54. Vyas S, van Eck CF, Vyas N, Fu FH, Otsuka NY. Increased medial tibial slope in teenage pediatric population with open physes and anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc. 2011;19(3):372–7.

    Article  Google Scholar 

  55. Zeng C, Cheng L, Wei J, Gao S, Yang T, Luo W, et al. The influence of the tibial plateau slopes on injury of the anterior cruciate ligament: a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2014;22(1):53–65.

    Article  Google Scholar 

  56. Shoemaker SC, Markolf KL. The role of the meniscus in the anterior-posterior stability of the loaded anterior cruciate-deficient knee. Effects of partial versus total excision. J Bone Joint Surg Am. 1986;68(1):71–9.

    Article  CAS  Google Scholar 

  57. Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF. The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy. 2006;22(8):894–9.

    Article  Google Scholar 

  58. Voos JE, Suero EM, Citak M, Petrigliano FP, Bosscher MRF, Citak M, et al. Effect of tibial slope on the stability of the anterior cruciate ligament-deficient knee. Knee Surg Sports Traumatol Arthrosc. 2012;20(8):1626–31.

    Article  Google Scholar 

  59. Lee J-J, Choi Y-J, Shin K-Y, Choi C-H. Medial meniscal tears in anterior cruciate ligament-deficient knees: effects of posterior tibial slope on medial meniscal tear. Knee Surg Relat Res. 2011;23(4):227–30.

    Article  Google Scholar 

  60. Ranawat AS, Nwachukwu BU, Pearle AD, Zuiderbaan HA, Weeks KD, Khamaisy S. Comparison of lateral closing-wedge versus medial opening-wedge high tibial osteotomy on knee joint alignment and kinematics in the ACL-deficient knee. Am J Sports Med. 2016;44(12):3103–10.

    Article  Google Scholar 

  61. Boss A, Stutz G, Oursin C, Gächter A. Anterior cruciate ligament reconstruction combined with valgus tibial osteotomy (combined procedure). Knee Surg Sports Traumatol Arthrosc. 1995;3(3):187–91.

    Article  CAS  Google Scholar 

  62. Demange MK, Camanho GL, Pécora JR, Gobbi RG, Tirico LEP, da Mota e Albuquerque RF. Simultaneous anterior cruciate ligament reconstruction and computer-assisted open-wedge high tibial osteotomy: a report of eight cases. Knee. 2011;18(6):387–91.

    Article  Google Scholar 

  63. Neuschwander DC, Drez D, Paine RM. Simultaneous high tibial osteotomy and ACL reconstruction for combined genu varum and symptomatic ACL tear. Orthopedics. 1993;16(6):679–84.

    CAS  PubMed  Google Scholar 

  64. Lattermann C, Jakob RP. High tibial osteotomy alone or combined with ligament reconstruction in anterior cruciate ligament-deficient knees. Knee Surg Sports Traumatol Arthrosc. 1996;4(1):32–8.

    Article  CAS  Google Scholar 

  65. Sonnery-Cottet B, Mogos S, Thaunat M, Archbold P, Fayard J-M, Freychet B, et al. Proximal tibial anterior closing wedge osteotomy in repeat revision of anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42(8):1873–80.

    Article  Google Scholar 

  66. MacDonald P, Miniaci A, Fowler P, Marks P, Finlay B. A biomechanical analysis of joint contact forces in the posterior cruciate deficient knee. Knee Surg Sports Traumatol Arthrosc. 1996;3(4):252–5.

    Article  CAS  Google Scholar 

  67. Skyhar MJ, Warren RF, Ortiz GJ, Schwartz E, Otis JC. The effects of sectioning of the posterior cruciate ligament and the posterolateral complex on the articular contact pressures within the knee. J Bone Joint Surg Am. 1993;75(5):694–9.

    Article  CAS  Google Scholar 

  68. Giffin JR, Stabile KJ, Zantop T, Vogrin TM, Woo SL-Y, Harner CD. Importance of tibial slope for stability of the posterior cruciate ligament deficient knee. Am J Sports Med. 2007;35(9):1443–9.

    Article  Google Scholar 

  69. Maquet P. Valgus osteotomy for osteoarthritis of the knee. Clin Orthop Relat Res. 1976;120:143–8.

    Google Scholar 

  70. Noyes FR, Goebel SX, West J. Opening wedge tibial osteotomy: the 3-triangle method to correct axial alignment and tibial slope. Am J Sports Med. 2005;33(3):378–87.

    Article  Google Scholar 

  71. Dugdale TW, Noyes FR, Styer D. Preoperative planning for high tibial osteotomy. The effect of lateral tibiofemoral separation and tibiofemoral length. Clin Orthop Relat Res. 1992;274:248–64.

    Google Scholar 

  72. Naudie DDR, Amendola A, Fowler PJ. Opening wedge high tibial osteotomy for symptomatic hyperextension-varus thrust. Am J Sports Med. 2004;32(1):60–70.

    Article  Google Scholar 

  73. Noyes F, Simon R. The role of high tibial osteotomy in the anterior cruciate ligament-deficient knee with varus alignment. In: DeLee JC, Drez D, editors. Orthopaedic sports medicine principles and practice. Philadelphia: W.B. Saunders; 1994. p. 1401–43.

    Google Scholar 

  74. Noyes FR, Barber-Westin SD, Hewett TE. High tibial osteotomy and ligament reconstruction for varus angulated anterior cruciate ligament-deficient knees. Am J Sports Med. 2000;28(3):282–96.

    Article  CAS  Google Scholar 

  75. Bonin N, Ait Si Selmi T, Donell ST, Dejour H, Neyret P. Anterior cruciate reconstruction combined with valgus upper tibial osteotomy: 12 years follow-up. Knee. 2004;11(6):431–7.

    Article  CAS  Google Scholar 

  76. Petrigliano FA, Suero EM, Voos JE, Pearle AD, Allen AA. The effect of proximal tibial slope on dynamic stability testing of the posterior cruciate ligament- and posterolateral corner-deficient knee. Am J Sports Med. 2012;40(6):1322–8.

    Article  Google Scholar 

  77. Takeuchi R. Simultaneous bilateral opening-wedge high tibial osteotomy with early full weight-bearing exercise. Knee Surg Sports Traumatol Arthrosc. 2008;16:1030–7.

    Article  Google Scholar 

  78. Takeuchi R, Ishikawa H, Miyasaka Y, Sasaki Y, Kuniya T, Tsukahara S. A novel closed-wedge high tibial osteotomy procedure to treat osteoarthritis of the knee: hybrid technique and rehabilitation measures. Arthrosc Tech. 2014;3(4):e431–7.

    Article  Google Scholar 

  79. Takeuchi R. Clinical results and radiological evaluation of opening wedge high tibial osteotomy for spontane osteonecrosis of the knee. Knee Surg Sports Traumatol Arthrosc. 2009;17:361–8.

    Article  Google Scholar 

  80. Ahlbäck S. Spontaneous osteonecrosis of the knee. Arthritis Rheum. 1968;11:705–33.

    Article  Google Scholar 

  81. Aglietti P, Insall JN, Buzzi R, Deschamps G. Idiopathic osteonecrosis of the knee. Aetiology, prognosis and treatment. J Bone Joint Surg Br. 1983;65(5):588–97.

    Article  CAS  Google Scholar 

  82. Forst J. Spontaneous osteonecrosis of the femoral condyle: causal treatment by early core decompression. Arch Orthop Trauma Surg. 1988;117:18–22.

    Article  Google Scholar 

  83. Koshino T. The treatment of spontaneous osteonecrosis of the knee by high tibial osteotomy with and without bone-grafting or drilling of the lesion. J Bone Joint Surg Am. 1982;64(1):47–58.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Kley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ESSKA

About this chapter

Cite this chapter

Clarke, S. et al. (2018). Osteotomies: Advanced and Complex Techniques. In: Kerkhoffs, G.M.M.J., Haddad, F., Hirschmann, M.T., Karlsson, J., Seil, R. (eds) ESSKA Instructional Course Lecture Book. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56127-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56127-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56126-3

  • Online ISBN: 978-3-662-56127-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics