Advertisement

Elektrostatik

  • Matthias BartelmannEmail author
  • Björn Feuerbacher
  • Timm Krüger
  • Dieter Lüst
  • Anton Rebhan
  • Andreas Wipf
Chapter
  • 6k Downloads

Zusammenfassung

Es war eine entscheidende intellektuelle Leistung der Physiker und Mathematiker des 19. Jahrhunderts, die elektrischen und magnetischen Phänomene in einer gemeinsamen Theorie, der Elektrodynamik, zu vereinigen und dabei dem Begriff von physikalischen Feldern zu einem Durchbruch zu verhelfen. Im Folgenden werden wir diese Vereinigung aber vorerst wieder aufheben, indem wir uns auf zeitunabhängige Probleme beschränken. Wenn Ladungen und Ströme zeitlich unveränderlich sind, zerfallen die Maxwell-Gleichungen in separate Gleichungen für elektrische und magnetische Felder, die unabhängig voneinander gelöst (und superponiert) werden können.

Die Gleichungen der Elektrostatik im Vakuum führen auf Problemstellungen, die denen der Newton’schen Gravitationstheorie ähnlich sind. Zusätzlich werden wir aber Randbedingungen an die elektrostatischen Felder diskutieren, insbesondere solche, die durch (perfekt) leitende Körper ins Spiel gebracht werden.

Die Methodik, mit der diese Fragestellungen behandelt werden können, ist die Potenzialtheorie, die ebenfalls im 19. Jahrhundert entwickelt wurde, insbesondere von den Mathematikern George Green (1793–1841) und Carl Friedrich Gauß (1777–1855).

Wie löst man elektrostatische Problemstellungen? Wozu sind Green’sche Funktionen gut? Wie kann man elektrische Felder abschirmen? Wie viel Energie steckt in einem geladenen Kondensator? Warum spüren wir das permanente elektrostatische Feld der Erde nicht? 

Supplementary material

Literatur

  1. Feynman, R., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, Bd. II, Kapitel 9. Benjamin Cummings, Pearson Education, Inc, USA (2005) zbMATHGoogle Scholar
  2. Harrison, R.G.: The global atmospheric electrical circuit and climate. Surv. Geophys. 25, 441–484 (2004). Online: http://arxiv.org/abs/physics/0506077
  3. Kim, K.-J., Jackson, J.D.: Proof that the Neumann Green’s function in electrostatics can be symmetrized. Am. J. Phys. 61, 1144–1146 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Matthias Bartelmann
    • 1
    Email author
  • Björn Feuerbacher
    • 2
  • Timm Krüger
    • 3
  • Dieter Lüst
    • 4
  • Anton Rebhan
    • 5
  • Andreas Wipf
    • 6
  1. 1.Universität HeidelbergHeidelbergDeutschland
  2. 2.HeidenheimDeutschland
  3. 3.University of EdinburghEdinburghGroßbritannien
  4. 4.Ludwig-Maximilians-Universität MünchenMünchenDeutschland
  5. 5.Technische Universität WienWienÖsterreich
  6. 6.Friedrich-Schiller-Universität JenaJenaDeutschland

Personalised recommendations