Das Bewegungsorgan Skelettmuskulatur

  • Paul Geraedts
Chapter

Zusammenfassung

Erst seit Kurzem fangen Forscher an zu verstehen, dass das Skelettmuskelsystem viel mehr ist als ein reines Bewegungsorgan. Als großes und wichtigstes Stoffwechselorgan schüttet es über 400 Botenstoffe mit entzündungshemmender und schützender Wirkung für viele Organe aus. Außerdem verbessert Muskelaktivität die Durchblutung und damit die Funktion anderer innerer Organe. Die einzigartige Eigenschaft der Kontraktilität ermöglicht Mobilität, von vitaler Bedeutung für den Menschen. Diese Funktion ist nur in Zusammenhang mit einem funktionsfähigen Knochen- und Gelenksystem möglich. Seit der Antike besteht großes Interesse am Training des Körpers, sei es für Krieg oder Sport. Denn das Muskelgewebe birgt ein enormes Leistungspotenzial, das durch Training aufgeschlossen werden kann.

Literatur

  1. Aho-Ritter A (2015) Hobby-Doping: Die Anonymen Anaboliker. http://news.doccheck.com/de/75657/hobby-doping-die-anonymen-anaboliker. Zugriff 12.04.2015
  2. Albrecht E, Gotoh T, Ebara F, Xu J, Viergutz T, Nürnberg G, Maak S, Wegner J (2011) Cellular conditions for intramuscular fat deposition in Japanese Black and Holstein steers. Meat Science 89: 13–20CrossRefGoogle Scholar
  3. Allen RE, Merkel RA, Young RB (1979) Cellular aspects of muscle growth: Myogenic cell proliferation. J Anim Sci 49: 115–127. doi: 10.2527/jas1979.491115xCrossRefPubMedGoogle Scholar
  4. American Supps (2014) Russische Komplexsätze. https://www.american-supps.com/russische-komplexsaetze-muskelaufbau-training. Zugriff: 12.09.2015
  5. Arnold AS, Gill J, Christe M, Ruiz R, McGuirk S, St-Pierre J, Tabares L, Handschin C (2014) Morphological and functional remodelling of the neuromuscular junction by skeletal muscle PGC-1α. Nature Communications. doi: 10.1038/ncomms4569
  6. Bachl N, Löllgen H, Tschan H, Wackerhage H, Wessner B (Hrsg) (2017) Molekulare Sport- und Leistungsphysiologie. Springer, Berlin Heidelberg, S 182–184Google Scholar
  7. Baggish AL, Weiner BG, Kanayama G, Hudson JI, Lu MT, Hoffmann U, Pope HG (2017) Cardiovascular toxicity of anabolic-androgene stereoid use. Circulation 135: 1991–2002. doi: 10.1161/circulationaha. 116.026945
  8. Becher R (2012) Gibt es eine Korrelation in der Verlaufsdiagnostik der quantitativen Kraftentwicklung der lumbalen Extensoren bei Patienten mit chronischen, unspezifischen Rückenschmerzen zwischen dem BieringSorensen-Test und einem standardisierten apparativ-gestützten Testverfahren (Schnell-System)? Dissertation, AG Manuelle Therapie im ZVK, WremenGoogle Scholar
  9. Berg RT, Butterfield RM (1976) New concepts of cattle growth. Sydney. University Press Berg und ButterfieldGoogle Scholar
  10. Böning D (2000) Muskelkater. Dtsch Z Sportmed 51 (2)Google Scholar
  11. Böning D (1988) Muskelkater – Ursachen, Vorbeugung, Behandlung. Dtsch Z Sportmed 39: 4–7Google Scholar
  12. Boonsanay V, Zhang T, Georgieva A, Kostin S, Qi H, Yuan X, Zhou Y, Braun T (2015) Regulation of skeletal muscle stem cell quiescence by Suv4-20h1-Dependent Facultative Heterochromatin Formation. Cell Stem Cell. doi: 10.1016/j.stem.2015.11.002CrossRefPubMedGoogle Scholar
  13. Boos C (2013) Viele Freizeitsportler dopen. http://www.ln-online.de/Lokales/Luebeck/Viele-Freizeitsportler-dopen. Zugriff: 06.01.2017
  14. Brok AGF (1989) Spierpijn; oorzaken, preventie, behandeling. Geneeskunde en Sport 22 (4)Google Scholar
  15. Brox JI, Sørensen R, Friis A, Nygaard Ø, Indahl A, Keller A, Ingebrigtsen T, Eriksen HR, Holm I, Koller AK, Riise R, Reikerås O (2003) Randomized clinical trial of lumbar instrumented fusion and cognitive intervention and exercises in patients with chronic low back pain and disc degeneration. Spine (Phila Pa 1976) 28 (17): 1913–1921CrossRefGoogle Scholar
  16. Buller AJ, Eccles JC, Eccles RM (1960) Interactions between motoneurons and muscles in respect of the characteristic speed of their responses. J Physiol (Lond) 150: 417–439CrossRefGoogle Scholar
  17. Burd NA, Yang Y, Moore DR, Tang JE, Tarnopolsky MA, Phillips SM (2012) Greater stimulation of myofibrillar protein synthesis with ingestion of whey protein isolate v. micellar casein at rest and after resistance exercise in elderly men. Br J Nutr 108 (6): 958–962. doi: 10.1017/S0007114511006271CrossRefPubMedGoogle Scholar
  18. Burkholder TJ (2007) Mechanotransduction in skeletal muscle. Front Biosci 12: 174–191CrossRefGoogle Scholar
  19. Butterworth RF (1988) Henry Gassett Davis and the ligaments. Brit J Chirop 53 (4): 65–66Google Scholar
  20. Chargé SBP, Rudnicki MA (2007) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84: 209–238, 2004; doi: 10.1152/physrev.00019.2003CrossRefPubMedGoogle Scholar
  21. Dambeck H (2012) Mutation: Wunderknabe trägt Muskel-Gen. http://www.spiegel.de/wissenschaft/mensch/mutation-wunderknabe-traegt-muskel-gen-a-305616.html. Zugriff: 12.10.2012
  22. Dankbar B, Fennen M, Brunert D, Hayer S, Frank S, Wehmeyer C, Beckmann D, Paruzel P, Bertrand J, Redlich K, Koers-Wunrau C, Stratis A, Korb-Pap A, Pap T (2015) Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice. Nature Medicine. doi: 10.1038/nm.3917CrossRefPubMedGoogle Scholar
  23. Denner RJ (1995) Zum Status der wirbelsäulenstabilisierenden Muskulatur – Analysemethoden, Referenzdaten und trainingsbedingte Anpassungserscheinungen. Dissertation, Deutsche Sporthochschule KölnGoogle Scholar
  24. von der Ecken J, Heissler SM, Pathan-Chhatbar S, Manstein DJ, Raunser S (2016) Cryo-EM structure of a human cytoplasmic actomyosin complex at near-atomic resolution. Nature 534: 724–728. doi: 10.1038/nature18295CrossRefPubMedGoogle Scholar
  25. Ellenbecker T (2009) Effective functional progressions in sport rehabilitation. Human KineticsGoogle Scholar
  26. Evans NA, Bowrey DJ, Newman GR (1988) Ultrastructural analysis of ruptured tendon from anabolic steroid users. Injury 29 (10): 769–773CrossRefGoogle Scholar
  27. Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ (1990) High-intensity strength training in Nonagenarians; JAMA 263 (22): 3029–3034CrossRefGoogle Scholar
  28. Fisker FY, Kildegaard S, Thygesen M, Grosen K, Pfeiffer-Jensen M (2017) Acute tendon changes in intense crossfit workout: An observational cohort study. Scand J Med Sci Sports 27 (11): 1258–1262. doi: 10.1111/sms.12781CrossRefGoogle Scholar
  29. Frost RA, Nystrom GJ, Lang CH (2004) Epinephrine stimulates IL-6 expression in skeletal muscle and C2C12 myoblasts: role of c-Jun NH2-terminal kinase and histone deacetylase activity. Am J Physiol Endocrinol Metab 286 (5): E809-17. doi: 10.1152/ajpendo.00560.2003CrossRefPubMedGoogle Scholar
  30. Fuqua JS, Rogol AD (2013) Neuroendocrine alterations in the exercising human: implications for energy homeostasis. Metabolism 62 (7): 911–921. doi: 10.1016/j.metabol.2013.01.016CrossRefPubMedGoogle Scholar
  31. Garnett RAF, O*Donovan MJ, Stephens JA, Taylor A (1979) Motor unit organisation in the human medial gastrocnemicus. J Physiol 287: 33–43Google Scholar
  32. Gebhardt U (2008) Wegen Bewegungsmangel im körperlichen Alarmzustand. Neue Zürcher Zeitung AG. https://www.nzz.ch/wegen_bewegungsmangel_im_koerperlichen_alarmzustand-1.1313996. Zugriff: 12.01.2015
  33. Gebhardt U (2008) Sport ist Balsam fürs Immunsystem, Bewegung dämpft Entzündungsprozesse im Körper und beugt damit vermutlich chronischen Krankheiten vor. Der Tagesspiegel online. http://www.tagesspiegel.de/wissen/medizin-sport-ist- balsam-fuers-immunsystem/1407300.html. Zugriff: 30.12.2014
  34. Giuseppone N, Goujon A, Du G, Moulin E, Fuks G, Maaloum M, Buhler E (2015) Hierarchical self-assembly of supramolecular muscle-like fibers. Angewandte Chemie. doi: 10.1002/ange.201509813CrossRefGoogle Scholar
  35. GMKT Gesellschaft für medizinische Kräftigungstherapie. Therapieergebnisse (2017) http://www.gmkt.de/index.php/portfolio/therapieergebnisse Zugriff: 12 August 2017
  36. Gokhale R, Chandrashekara S, Vasanthakumar KC (2007) Cytokine response to strenuous exercise in athletes and non-athletes – an adaptive response. Cytokine 40 (2): 123–127. doi: 10.1016/j.cyto.2007.08.006CrossRefPubMedGoogle Scholar
  37. Goldspink G (2003) Gene expression in muscle in response to exercise. J Mus Res Cell Mot 24: 121–126Google Scholar
  38. Goldspink G (1996) Muscle growth and muscle function: a molecular biological perspective. Res Vet Sci 60 (3): 193–204CrossRefGoogle Scholar
  39. Grant AL, Gerrard DE (1998) Cellular and molecular approaches for altering muscle growth and development. Can J Anim Sci 78: 493–502. doi.org/10.4141/A98-090CrossRefGoogle Scholar
  40. Graves JE, Webb DC, Pollock ML, Matkozich J, Leggett SH, Carpenter DM, Foster DN, Cirulli J (1994) Pelvic stabilization during resistance training: its effect on the development of lumbar extension strength. Arch Phys Med Rehabil 75 (2): 210–215Google Scholar
  41. ter Haar Romeny BM, Denier van der GonJJ, Gielen CCAM (1984) Relation between location of a motor unit in the human biceps brachii and its critical firing levels for different tasks. Exp Neurology 85 (3): 631–650Google Scholar
  42. Hendriks J (2016) Berichterstatter der Volkskrant. Knieblessure? Wacht langer met terugkeer (Knieverletzung? Länger warten mit Trainingsanfang). Wissenschaftsmagasin, 24. Mai 2016Google Scholar
  43. Herbison GJ, Jaweed MM, Ditunno JF (1982) Muscle fiber types. Arch Phys Med Rehabil 63 (5): 227–230Google Scholar
  44. Hering GO (2000) Über mechanische und elektrophysiologische Eigenschaften von so genannten langsamen und schnellen Muskeln – Eine Untersuchung am M. quadriceps femoris von Marathonläufern, Sprintern, Volleyballspielern und Sportstudenten. Dissertation, Universität KonstanzGoogle Scholar
  45. Hernandez-Rodriguez J, Segarra M, Vilardell C, Sánchez M, García-Martínez A, Esteban M-J, Grau JM, Urbano-Márquez A, Colomer D, Kleinman HK Cid MC (2003) Elevated production of interleukin-6 is associated with a lower incidence of disease-related ischemic events in patients with giant-cell arteritis: angiogenic activity of interleukin-6 as a potential protective mechanism. Circulation 107 (19): 2428–2434. doi: 10.1161/01.CIR.0000066907. 83923.32
  46. Hoffmann J, Willmann U (2003) Wastl P – Krafttraining- vom Leistungs- zum Gesundheitstraining, Düsseldorf, WS 2003/04 http://user.phil-fak.uni-duesseldorf.de/~wastl/Wastl/Training/Hypertrophie_Jan %2BUwe_.PDF. Zugriff: 02.04.2015
  47. Hosseinifar M, Akbari M, Behtash H, Amiri M, Sarrafzadeh J (2013) The Effects of stabilization and McKenzie exercises on transverse abdominis and multifidus muscle thickness, pain, and disability: A randomized controlled trial in non specific chronic low back pain. J Phys Ther Sci 25 (12): 1541–1545CrossRefGoogle Scholar
  48. van Ingen Schenau GJ, Gielen S (1990) Intermusculaire coördinatie; co-activatie van antagonisten bij he sturen van een uitwendige kracht. Geneeskunde en Sport 23 (3)Google Scholar
  49. van Ingen Schenau GJ, Gielen S (1990) Intermusculäire coördinatie (2): over de organisatie van het sturen van bewegingen. Geneeskunde en Sport 23 (4)Google Scholar
  50. Inhofe PD, Grana WA, Egle D, Min KW, Tomasek J (1995) The effects of anabolic steroids on rat tendon. An ultrastructural, biomechanical, and biochemical analysis. Am J Sports Med 23 (2): 227–232CrossRefGoogle Scholar
  51. Johannsen F, Remvig l, Kryger P, Beck P, Warming S, Lybeck K, Dreyer V, Larsen LH (1995) Exercises for chronic low back pain: A clinical trial. J Orthop Sports Phys Ther 22 (2): 52–59CrossRefGoogle Scholar
  52. Jones D, Round J, de Haan A (2006) Skeletal muscle from molecules to movement. Churchil Livingstone Verlag, Elsevier 2004. Br J Sports Med 40 (11): 950. doi: 10.1136/bjsm.2006.026567CrossRefPubMedCentralGoogle Scholar
  53. Kanayam G, DeLuca J, Meehan W P, Hudson J I, Isaacs S, Baggish A, Weinern R, Micheli L, Pope H G (2015) Ruptured tendons in anabolic-androgenic steroid users: A cross-sectional cohort study. Am J Sports Med 43 (11): 2638–2644. doi: 10.1177/0363546515602010CrossRefPubMedPubMedCentralGoogle Scholar
  54. Karpakka JA, Pesola MK, Takala TE (1992) The effects of anabolic steroids on collagen synthesis in rat skeletal muscle and tendon. A preliminary report. Am J Sports Med 20 (3): 262–266CrossRefGoogle Scholar
  55. Kraemer WJ, Ratamess NA (2013) Hormonal responses and adaptations to resistance exercise and training. Sports Med 35 (4): 339–361CrossRefGoogle Scholar
  56. Kraft WE (2004) Adaptation in der Myofibrille: Wissenschaft aktuell: Muskelkater. physiopraxis 2: 16–19CrossRefGoogle Scholar
  57. Kwon Y, Kravitz L (2004) How do muscles grow? https://www.unm.edu/~lkravitz/Article%20folder/musclesgrowLK.html Zugriff: 12.01.2015
  58. Lombard WP, Abbott FM (1907) The mechanical effects produced by the contraction of individual muscles of the thigh of the frog. Am J Physiol 20: 1–60CrossRefGoogle Scholar
  59. Manniche C, Hesselsoe G, Bentzen I (1988) Clinical trial of intensive muscle training for chronic low back pain. Lancet 1988:1:1473-1476.CrossRefGoogle Scholar
  60. Manniche C, Lundberg E, Christensen I, Hesselsoe G (1991) Intensive dynamic back exercises for chronic low back pain: a clinical trial. Pain 47 (1): 53–63CrossRefGoogle Scholar
  61. Martini FH, Nath JL, Bartholomew EF (2012) Anatomy & Physiology, 9. Aufl. Edition Pearsons EducationGoogle Scholar
  62. McFarlin BK, Flynn MG, Campbell WW, Craig BA, Robinson P, Stewart LK, Timmerman KL, Coen PM (2006) Physical activity status, but not age, influences inflammatory biomarkers and toll-like receptor 4. J Gerontol A Biol Sci Med Sci 61 (4): 388–393CrossRefGoogle Scholar
  63. McGill SM, Childs A, Liebenson C (1999) Endurance times for low back stabilization exercises: clinical targets for testing and training from a normal database. Arch Phys Med Rehabil 80 (8): 941–944CrossRefGoogle Scholar
  64. McGill SM, Grenier S, Bluhm M, Preuss R, Brown S, Russel C (2003) Previous history of LBP with work loss is related to lingering deficits in biomechanical, physiological, personal, psychosocial and motor control characteristics. Ergonomics 46 (7): 731–746CrossRefGoogle Scholar
  65. Meeusen R, Duclos M, Foster C, Fry A, Gleeson M, Nieman D, Raglin J, Rietjens G, Steinacker J, Urhausen A (2013) Prevention, diagnosis and treatment of the overtraining syndrome: joint consensus statement of the European College of Sports Science and the American College of Sports Medicine. Med Sci Sports Exerc 45 (1): 186–205Google Scholar
  66. Messner T (2010) Leidlinie versus Leitlinie. Interpretation am Beispiel des unspezifischen akut-subakuten lumbalen Rückenschmerzes. PT Zeitschrift für Physiotherapeuten 62: 6–20Google Scholar
  67. Miles MP, Andring JM, Pearson SD, Gordon LK, Kasper C, Depner CM, Kidd JR (2008) Diurnal variation, response to eccentric exercise, and association of inflammatory mediators with muscle damage variables. J Appl Physiol (1985) 104 (2): 451–458. doi: 10.1152/japplphysiol.00572.2007CrossRefPubMedGoogle Scholar
  68. Nelson BW, O’Reilly E, Miller M, Hogan M, Wegner JA, Kelly C (1995) The clinical effects of intensive, specific exercise on chronic low back pain: a controlled study of 895 consecutive patients with 1-year follow up. Orthopedics 18 (10): 971–981Google Scholar
  69. Nelson SW, Carpenter DM, Dreisinger TE, Mitchell M, Kelly CE, Wegner JA (1999) Can spinal surgery be prevented by aggressive strengthening exercises? A prospective study of cervical and lumbar patients. Arch Phys Med Rehabil 80 (1): 20–25CrossRefGoogle Scholar
  70. Nouriani A (2008) Neuroanatomische Charakterisierung von Neuronen im Trigeminus-Ganglion, die den extraoculären Augenmuskel des Primaten innervieren. Dissertation, Ludwig-Maximilians-Universität MünchenGoogle Scholar
  71. Nutt JJ (1915) Diseases and Deformities of the Foot. EB Treat & ConpanyGoogle Scholar
  72. Oonk HHN (1988) Osteo- en Arthrokinematica. Verlag Henric Graaff van Ijssel, NiederlandeGoogle Scholar
  73. Owens FN, Dubeski P, Hanson CF (1993) Factors that alter the growth and development of ruminants. J Anim Sci 71: 3138–3150CrossRefGoogle Scholar
  74. Parkhurst TM, Burnett CN (1994) Injury and proprioception in the lower back. Orthop Sports Phys Ther 19 (5): 282–294. doi: 10.2519/jospt.1994.19.5.282CrossRefGoogle Scholar
  75. Pedersen BK, Akerström TC, Nielsen AR, Fischer CP (2007) Role of myokines in exercise and metabolism. J Appl Physiol 103 (3): 1093–1098. doi: 10.1152/japplphysiol.00080.2007CrossRefPubMedGoogle Scholar
  76. Petersen AM, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol (1985). 98 (4): 1154–1162. doi: 10.1152/japplphysiol.00164.2004CrossRefPubMedGoogle Scholar
  77. Proske U (1994) Development of skeletal muscle and its innervation. In: Thorburn, GD Harding R (Hrsg): Textbook of fetal physiology. Oxford University Press, Oxford, New York, Tokio, S 310–321Google Scholar
  78. Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia AS O, McNamara J, Williams SM (Hrsg) (2008) Neuroscience, 4. Aufl. Sinauer AssociatesGoogle Scholar
  79. Rasmussen BB, Phillips SM (2003) Contractile and nutritional regulation of human muscle growth. Exerc Sport Sci Rev 31 (3): 127–131. PMID: 12882478CrossRefGoogle Scholar
  80. Ratey JJ, Manning R (2006) Zivilisationskrank – wie wir unsere biologische Natur mit dem modernen Leben versöhnen. Bastei Lübbe, KölnGoogle Scholar
  81. Risch SV, Norvell NK, Pollock ML, Risch ED, Langer H, Fulton M, Graves JE, Leggett SH (1993) Lumbar strengthening in chronic low back pain patients. Physiologic and psychological benefits. Spine (Phila Pa 1976) 18 (2): 232–238CrossRefGoogle Scholar
  82. Rivas-Pardo JA, Eckels EC, Popa I, Kosuri P, Linke WA, Julio M. Fernández JM (2016) Work done by titin protein folding assists muscle contraction. Cell Rep 14 (6): 1339–1347. doi: 10.1016/j.celrep.2016.01.025CrossRefPubMedPubMedCentralGoogle Scholar
  83. Sela BA (2002) Titin: some aspects of the largest protein in the body. Harefuah 141 (7): 631–635, 665. PMID: 12187564Google Scholar
  84. Sigl B (2009) Medizinische Kräftigungstherapie – Die erfolgreiche Behandlungsmöglichkeit an der Wirbelsäule. Gesellschaft für Medizinische Kräftigungstherapie, 4. Aufl.Google Scholar
  85. Spornitz UM (2010) Anatomie und Physiologie. Lehrbuch und Atlas für Pflege- und Gesundheitsfachberufe, 6. Aufl. Springer, Berlin HeidelbergGoogle Scholar
  86. Tomiya A, Aizawa T, Nagatomi R, Sensui H, Kokubun S (2004) Myofibers express IL-6 after eccentric exercise. Am J Sports Med 32 (2): 503–508 doi: 10.1177/ 0095399703258788Google Scholar
  87. van Tulder M, Malmivaara A, Esmail R, Koes B (2000) Exercise therapy for low back pain: a systematic review within the framework of the cochrane collaboration back review group. Spine (Phila Pa 1976) 25 (21): 2784–2796CrossRefGoogle Scholar
  88. van Tulder MW, Koes B, Malmivaara A (2006) Outcome of non-invasive treatment modalities on back pain: an evidence-based review. Eur Spine J 15 (Suppl 1): S64–S81. doi: 10.1007/s00586-005-1048-6CrossRefPubMedPubMedCentralGoogle Scholar
  89. Volpe SL (2013) How to increase muscle mass: what does science tell us? ACSM’S Health & Fitness Journal 17 (5): 35–36. doi: 10.1249/FIT.0b013e3182a05fe7CrossRefGoogle Scholar
  90. Wang HK, Lin JJ, Pan SL, Wang TG (2005) Sonographic evaluations in elite college baseball athletes. Scand J Med Sci Sports 15 (1): 29–35. doi: 10.1111/j.1600-0838.2004.00408.xCrossRefPubMedGoogle Scholar
  91. Wegner J, Albrecht E, Fiedler I, Teuscher F, Papstein H-J, Ender K (2000) Growth- and breed-related changes of muscle fiber characteristics in cattle. J Anim Sci 78: 1485–1496CrossRefGoogle Scholar
  92. Wegner J, Klaus E (1990) Mikrostrukturelle Grundlagen des Wachstums von Muskel- und Fettgewebe und die Beziehung zu Fleischansatz und Fleischbeschaffenheit. Fleischwirtschaft 70 (3): 337–340Google Scholar
  93. Weitkunat M, Kaya-Çopur A, Grill SW, Schnorrer F (2014) Tension and force-resistant attachment are essential for myofibrillogenesis in drosophila flight muscle. Curr Biol 24 (7): 705–716. doi: 10.1016/j.cub.2014.02.032CrossRefPubMedGoogle Scholar
  94. Wiemann K (1991) Präzisierung des Lombardschen Paradoxons in der Funktion der ischiocruralen Muskeln beim Sprint. Sportwissenschaft 21 4: 413–428CrossRefGoogle Scholar
  95. Wydra G (2004) Zur Problematik von Normen in der Bewegungstherapie. Krankengymnastik – Zeitschrift für Physiotherapeuten 56: 2280–2289Google Scholar
  96. van Zuylen EJ, Gielen CC, Denier van der Gon JJ (1988) Coordination and inhomogeneous activation of human arm muscles during isometric torques. J Neurophysiol 60 (5): 1523–1548. doi: 10.1152/jn.1988.60.5.1523CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2018

Authors and Affiliations

  • Paul Geraedts
    • 1
  1. 1.Medi Reha Geraedts Praxis für SportrehabilitationAlsdorfDeutschland

Personalised recommendations