Advertisement

Network Flows

  • Bernhard Korte
  • Jens Vygen
Chapter
Part of the Algorithms and Combinatorics book series (AC, volume 21)

Abstract

In this and the next chapter we consider flows in networks. We have a digraph G with edge capacities \(u: E(G) \rightarrow \mathbb{R}_{+}\) and two specified vertices s (the source) and t (the sink) . The quadruple (G, u, s, t) is sometimes called a network .

References

General Literature

  1. Ahuja, R.K., Magnanti, T.L., and Orlin, J.B. [1993]: Network Flows. Prentice-Hall, Englewood Cliffs 1993Google Scholar
  2. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., and Schrijver, A. [1998]: Combinatorial Optimization. Wiley, New York 1998, Chapter 3Google Scholar
  3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. [2009]: Introduction to Algorithms. Third Edition. MIT Press, Cambridge 2009, Chapter 26Google Scholar
  4. Ford, L.R., and Fulkerson, D.R. [1962]: Flows in Networks. Princeton University Press, Princeton 1962Google Scholar
  5. Frank, A. [1995]: Connectivity and network flows. In: Handbook of Combinatorics; Vol. 1 (R.L. Graham, M. Grötschel, L. Lovász, eds.), Elsevier, Amsterdam, 1995Google Scholar
  6. Frank, A. [2011]: Connections in Combinatorial Optimization. Oxford University Press, Oxford 2011Google Scholar
  7. Goldberg, A.V., Tardos, É., and Tarjan, R.E. [1990]: Network flow algorithms. In: Paths, Flows, and VLSI-Layout (B. Korte, L. Lovász, H.J. Prömel, A. Schrijver, eds.), Springer, Berlin 1990, pp. 101–164Google Scholar
  8. Gondran, M., and Minoux, M. [1984]: Graphs and Algorithms. Wiley, Chichester 1984, Chapter 5Google Scholar
  9. Jungnickel, D. [2013]: Graphs, Networks and Algorithms. Fourth Edition. Springer, Berlin 2013Google Scholar
  10. Phillips, D.T., and Garcia-Diaz, A. [1981]: Fundamentals of Network Analysis. Prentice-Hall, Englewood Cliffs 1981Google Scholar
  11. Ruhe, G. [1991]: Algorithmic Aspects of Flows in Networks. Kluwer Academic Publishers, Dordrecht 1991Google Scholar
  12. Schrijver, A. [2003]: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin 2003, Chapters 9,10,13–15Google Scholar
  13. Tarjan, R.E. [1983]: Data Structures and Network Algorithms. SIAM, Philadelphia 1983, Chapter 8Google Scholar
  14. Thulasiraman, K., and Swamy, M.N.S. [1992]: Graphs: Theory and Algorithms. Wiley, New York 1992, Chapter 12Google Scholar

Cited References

  1. Ahuja, R.K., Orlin, J.B., and Tarjan, R.E. [1989]: Improved time bounds for the maximum flow problem. SIAM Journal on Computing 18 (1989), 939–954Google Scholar
  2. Borradaile, G. and Klein, P. [2009]: An O(nlogn) algorithm for maximum st-flow in a directed planar graph. Journal of the ACM 56 (2009), Article 9Google Scholar
  3. Cheriyan, J., and Maheshwari, S.N. [1989]: Analysis of preflow push algorithms for maximum network flow. SIAM Journal on Computing 18 (1989), 1057–1086Google Scholar
  4. Cheriyan, J., and Mehlhorn, K. [1999]: An analysis of the highest-level selection rule in the preflow-push max-flow algorithm. Information Processing Letters 69 (1999), 239–242Google Scholar
  5. Cherkassky, B.V. [1977]: Algorithm of construction of maximal flow in networks with complexity of \(O(V ^{2}\sqrt{E})\) operations. Mathematical Methods of Solution of Economical Problems 7 (1977), 112–125 [in Russian]Google Scholar
  6. Cheung, K.K.H., Cunningham, W.H., and Tang, L. [2006]: Optimal 3-terminal cuts and linear programming. Mathematical Programming 106 (2006), 1–23Google Scholar
  7. Cheung, H.Y., Lau, L.C., and Leung, K.M. [2011]: Graph connectivities, network coding, and expander graphs. Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science (2011), 197–206Google Scholar
  8. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., and Yannakakis, M. [1994]: The complexity of multiterminal cuts. SIAM Journal on Computing 23 (1994), 864–894Google Scholar
  9. Dantzig, G.B., and Fulkerson, D.R. [1956]: On the max-flow min-cut theorem of networks. In: Linear Inequalities and Related Systems (H.W. Kuhn, A.W. Tucker, eds.), Princeton University Press, Princeton 1956, pp. 215–221Google Scholar
  10. Dinic, E.A. [1970]: Algorithm for solution of a problem of maximum flow in a network with power estimation. Soviet Mathematics Doklady 11 (1970), 1277–1280Google Scholar
  11. Dinitz, E.A., Karzanov, A.V., and Lomonosov, M.V. [1976]: On the structure of the system of minimum edge cuts of a graph. Issledovaniya po Diskretnoĭ Optimizatsii (A.A. Fridman, ed.), Nauka, Moscow, 1976, pp. 290–306 [in Russian]Google Scholar
  12. Edmonds, J., and Karp, R.M. [1972]: Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM 19 (1972), 248–264Google Scholar
  13. Elias, P., Feinstein, A., and Shannon, C.E. [1956]: Note on maximum flow through a network. IRE Transactions on Information Theory, IT-2 (1956), 117–119Google Scholar
  14. Even, S., and Tarjan, R.E. [1975]: Network flow and testing graph connectivity. SIAM Journal on Computing 4 (1975), 507–518Google Scholar
  15. Ford, L.R., and Fulkerson, D.R. [1956]: Maximal Flow Through a Network. Canadian Journal of Mathematics 8 (1956), 399–404Google Scholar
  16. Ford, L.R., and Fulkerson, D.R. [1957]: A simple algorithm for finding maximal network flows and an application to the Hitchcock problem. Canadian Journal of Mathematics 9 (1957), 210–218Google Scholar
  17. Frank, A. [1994]: On the edge-connectivity algorithm of Nagamochi and Ibaraki. Laboratoire Artemis, IMAG, Université J. Fourier, Grenoble, 1994Google Scholar
  18. Fujishige, S. [2003]: A maximum flow algorithm using MA ordering. Operations Research Letters 31 (2003), 176–178Google Scholar
  19. Gabow, H.N. [1995]: A matroid approach to finding edge connectivity and packing arborescences. Journal of Computer and System Sciences 50 (1995), 259–273Google Scholar
  20. Gabow, H.N. [2006]: Using expander graphs to find vertex-connectivity. Journal of the ACM 53 (2006), 800–844Google Scholar
  21. Galil, Z. [1980]: An \(O(V ^{\frac{5} {3} }E^{\frac{2} {3} })\) algorithm for the maximal flow problem. Acta Informatica 14 (1980), 221–242Google Scholar
  22. Galil, Z., and Namaad, A. [1980]: An O(EV log2 V ) algorithm for the maximal flow problem. Journal of Computer and System Sciences 21 (1980), 203–217Google Scholar
  23. Gallai, T. [1958]: Maximum-minimum Sätze über Graphen. Acta Mathematica Academiae Scientiarum Hungaricae 9 (1958), 395–434Google Scholar
  24. Goldberg, A.V., and Rao, S. [1998]: Beyond the flow decomposition barrier. Journal of the ACM 45 (1998), 783–797Google Scholar
  25. Goldberg, A.V., and Tarjan, R.E. [1988]: A new approach to the maximum flow problem. Journal of the ACM 35 (1988), 921–940Google Scholar
  26. Gomory, R.E., and Hu, T.C. [1961]: Multi-terminal network flows. Journal of SIAM 9 (1961), 551–570Google Scholar
  27. Gusfield, D. [1990]: Very simple methods for all pairs network flow analysis. SIAM Journal on Computing 19 (1990), 143–155Google Scholar
  28. Hao, J., and Orlin, J.B. [1994]: A faster algorithm for finding the minimum cut in a directed graph. Journal of Algorithms 17 (1994), 409–423Google Scholar
  29. Henzinger, M.R., Rao, S., and Wang, D. [2017]: Local flow partitioning for faster edge connectivity. Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (2017), 1919–1938Google Scholar
  30. Henzinger, M.R., Rao, S., and Gabow, H.N. [2000]: Computing vertex connectivity: new bounds from old techniques. Journal of Algorithms 34 (2000), 222–250Google Scholar
  31. Hoffman, A.J. [1960]: Some recent applications of the theory of linear inequalities to extremal combinatorial analysis. In: Combinatorial Analysis (R.E. Bellman, M. Hall, eds.), AMS, Providence 1960, pp. 113–128Google Scholar
  32. Hu, T.C. [1969]: Integer Programming and Network Flows. Addison-Wesley, Reading 1969Google Scholar
  33. Jelinek, F., and Mayeda, W. [1963]: On the maximum number of different entries in the terminal capacity matrix of oriented communication nets. IEEE Transactions on Circuit Theory 10 (1963), 307–308Google Scholar
  34. Kamidoi, Y., Yoshida, N., and Nagamochi, H. [2007]: A deterministic algorithm for finding all minimum k-way cuts. SIAM Journal on Computing 36 (2007), 1329–1341Google Scholar
  35. Karger, D.R. [2000]: Minimum cuts in near-linear time. Journal of the ACM 47 (2000), 46–76Google Scholar
  36. Karger, D.R., and Levine, M.S. [1998]: Finding maximum flows in undirected graphs seems easier than bipartite matching. Proceedings of the 30th Annual ACM Symposium on Theory of Computing (1998), 69–78Google Scholar
  37. Karger, D.R., and Stein, C. [1996]: A new approach to the minimum cut problem. Journal of the ACM 43 (1996), 601–640Google Scholar
  38. Karzanov, A.V. [1973]: On finding a maximum flow in a network with special structure and some applications. In: Matematicheskie Voprosy Upravleniya Proizvodstvom 5 (L.A. Lyusternik, ed.), Moscow State University Press, Moscow, 1973, pp. 81–94 [in Russian]Google Scholar
  39. Karzanov, A.V. [1974]: Determining a maximal flow in a network by the method of preflows. Soviet Mathematics Doklady 15 (1974), 434–437Google Scholar
  40. Lee, Y.T., and Sidford, A. [2014]: Path finding methods for linear programming. Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science (2014), 424–433Google Scholar
  41. Mader, W. [1972]: Über minimal n-fach zusammenhängende, unendliche Graphen und ein Extremalproblem. Arch. Math. 23 (1972), 553–560Google Scholar
  42. Mader, W. [1981]: On a property of n edge-connected digraphs. Combinatorica 1 (1981), 385–386Google Scholar
  43. Malhotra, V.M., Kumar, M.P., and Maheshwari, S.N. [1978]: An O( | V |3) algorithm for finding maximum flows in networks. Information Processing Letters 7 (1978), 277–278Google Scholar
  44. Menger, K. [1927]: Zur allgemeinen Kurventheorie. Fundamenta Mathematicae 10 (1927), 96–115Google Scholar
  45. Nagamochi, H., and Ibaraki, T. [1992]: Computing edge-connectivity in multigraphs and capacitated graphs. SIAM Journal on Discrete Mathematics 5 (1992), 54–66Google Scholar
  46. Nagamochi, H., and Ibaraki, T. [2000]: A fast algorithm for computing minimum 3-way and 4-way cuts. Mathematical Programming 88 (2000), 507–520Google Scholar
  47. Nagamochi, H., Nishimura, K., and Ibaraki, T. [1997]: Computing all small cuts in an undirected network. SIAM Journal on Discrete Mathematics 10 (1997), 469–481Google Scholar
  48. Orlin, J.B. [2013]: Max flows in O(nm) time, or better. Proceedings of the 45th Annual ACM Symposium on Theory of Computing (2013), 765–774Google Scholar
  49. Phillips, S., and Dessouky, M.I. [1977]: Solving the project time/cost tradeoff problem using the minimal cut concept. Management Science 24 (1977), 393–400Google Scholar
  50. Picard, J., and Queyranne, M. [1980]: On the structure of all minimum cuts in a network and applications. Mathematical Programming Study 13 (1980), 8–16Google Scholar
  51. Queyranne, M. [1998]: Minimizing symmetric submodular functions. Mathematical Programming B 82 (1998), 3–12Google Scholar
  52. Rose, D.J. [1970]: Triangulated graphs and the elimination process. Journal of Mathematical Analysis and Applications 32 (1970), 597–609Google Scholar
  53. Shiloach, Y. [1978]: An O(nIlog2 I) maximum-flow algorithm. Technical Report STAN-CS-78-802, Computer Science Department, Stanford University, 1978Google Scholar
  54. Shiloach, Y. [1979]: Edge-disjoint branching in directed multigraphs. Information Processing Letters 8 (1979), 24–27Google Scholar
  55. Shioura, A. [2004]: The MA ordering max-flow algorithm is not strongly polynomial for directed networks. Operations Research Letters 32 (2004), 31–35Google Scholar
  56. Sleator, D.D. [1980]: An O(nmlogn) algorithm for maximum network flow. Technical Report STAN-CS-80-831, Computer Science Department, Stanford University, 1978Google Scholar
  57. Sleator, D.D., and Tarjan, R.E. [1983]: A data structure for dynamic trees. Journal of Computer and System Sciences 26 (1983), 362–391Google Scholar
  58. Su, X.Y. [1997]: Some generalizations of Menger’s theorem concerning arc-connected digraphs. Discrete Mathematics 175 (1997), 293–296Google Scholar
  59. Stoer, M., and Wagner, F. [1997]: A simple min cut algorithm. Journal of the ACM 44 (1997), 585–591Google Scholar
  60. Tarjan, R.E. [1972]: Depth first search and linear graph algorithms. SIAM Journal on Computing 1 (1972), 146–160Google Scholar
  61. Thorup, M. [2008]: Minimum k-way cuts via deterministic greedy tree packing. Proceedings of the 40th Annual ACM Symposium on Theory of Computing (2008), 159–165Google Scholar
  62. Tunçel, L. [1994]: On the complexity preflow-push algorithms for maximum flow problems. Algorithmica 11 (1994), 353–359Google Scholar
  63. Vazirani, V.V., and Yannakakis, M. [1992]: Suboptimal cuts: their enumeration, weight, and number. In: Automata, Languages and Programming; Proceedings of the 19th ICALP conference; LNCS 623 (W. Kuich, ed.), Springer, Berlin 1992, pp. 366–377Google Scholar
  64. Vygen, J. [2002]: On dual minimum cost flow algorithms. Mathematical Methods of Operations Research 56 (2002), 101–126Google Scholar
  65. Weihe, K. [1997]: Maximum (s, t)-flows in planar networks in O( | V | log | V | ) time. Journal of Computer and System Sciences 55 (1997), 454–475Google Scholar
  66. Whitney, H. [1932]: Congruent graphs and the connectivity of graphs. American Journal of Mathematics 54 (1932), 150–168Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Bernhard Korte
    • 1
  • Jens Vygen
    • 1
  1. 1.Research Institute for Discrete MathematicsUniversity of BonnBonnGermany

Personalised recommendations