Advertisement

Spanning Trees and Arborescences

  • Bernhard Korte
  • Jens Vygen
Chapter
Part of the Algorithms and Combinatorics book series (AC, volume 21)

Abstract

Consider a telephone company that wants to rent a subset from an existing set of cables, each of which connects two cities. The rented cables should suffice to connect all cities and they should be as cheap as possible. It is natural to model the network by a graph: the vertices are the cities and the edges correspond to the cables. By Theorem  2.4 the minimal connected spanning subgraphs of a given graph are its spanning trees. So we look for a spanning tree of minimum weight, where we say that a subgraph T of a graph G with weights \(c: E(G) \rightarrow \mathbb{R}\) has weight c(E(T)) = eE(T) c(e). We shall refer to c(e) also as the cost of e.

References

General Literature

  1. Ahuja, R.K., Magnanti, T.L., and Orlin, J.B. [1993]: Network Flows. Prentice-Hall, Englewood Cliffs 1993, Chapter 13Google Scholar
  2. Balakrishnan, V.K. [1995]: Network Optimization. Chapman and Hall, London 1995, Chapter 1Google Scholar
  3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. [2009]: Introduction to Algorithms. Third Edition. MIT Press, Cambridge 2009, Chapter 23Google Scholar
  4. Gondran, M., and Minoux, M. [1984]: Graphs and Algorithms. Wiley, Chichester 1984, Chapter 4Google Scholar
  5. Magnanti, T.L., and Wolsey, L.A. [1995]: Optimal trees. In: Handbooks in Operations Research and Management Science; Volume 7: Network Models (M.O. Ball, T.L. Magnanti, C.L. Monma, G.L. Nemhauser, eds.), Elsevier, Amsterdam 1995, pp. 503–616Google Scholar
  6. Schrijver, A. [2003]: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin 2003, Chapters 50–53Google Scholar
  7. Tarjan, R.E. [1983]: Data Structures and Network Algorithms. SIAM, Philadelphia 1983, Chapter 6Google Scholar
  8. Wu, B.Y., and Chao, K.-M. [2004]: Spanning Trees and Optimization Problems. Chapman & Hall/CRC, Boca Raton 2004Google Scholar

Cited References

  1. Bock, F.C. [1971]: An algorithm to construct a minimum directed spanning tree in a directed network. In: Avi-Itzhak, B. (Ed.): Developments in Operations Research, Volume I. Gordon and Breach, New York 1971, pp. 29–44Google Scholar
  2. Borůvka, O. [1926a]: O jistém problému minimálním. Práca Moravské Pr̆írodovĕdecké Spolnec̆nosti 3 (1926), 37–58 [in Czech]Google Scholar
  3. Borůvka, O. [1926b]: Pr̆íspevĕk k r̆es̆ení otázky ekonomické stavby. Elektrovodních sítí. Elektrotechnicky Obzor 15 (1926), 153–154 [in Czech]Google Scholar
  4. Cayley, A. [1889]: A theorem on trees. Quarterly Journal on Mathematics 23 (1889), 376–378Google Scholar
  5. Chazelle, B. [2000]: A minimum spanning tree algorithm with inverse-Ackermann type complexity. Journal of the ACM 47 (2000), 1028–1047Google Scholar
  6. Cheriton, D., and Tarjan, R.E. [1976]: Finding minimum spanning trees. SIAM Journal on Computing 5 (1976), 724–742Google Scholar
  7. Chu, Y., and Liu, T. [1965]: On the shortest arborescence of a directed graph. Scientia Sinica 4 (1965), 1396–1400; Mathematical Review 33, # 1245Google Scholar
  8. Conforti, M., Cornuéjols, G., and Zambelli, G. [2010]: Extended formulations in combinatorial optimization. 4OR 8 (2010), 1–48Google Scholar
  9. Diestel, R. [1997]: Graph Theory. Springer, New York 1997Google Scholar
  10. Dijkstra, E.W. [1959]: A note on two problems in connexion with graphs. Numerische Mathematik 1 (1959), 269–271Google Scholar
  11. Dixon, B., Rauch, M., and Tarjan, R.E. [1992]: Verification and sensitivity analysis of minimum spanning trees in linear time. SIAM Journal on Computing 21 (1992), 1184–1192Google Scholar
  12. Edmonds, J. [1967]: Optimum branchings. Journal of Research of the National Bureau of Standards B 71 (1967), 233–240Google Scholar
  13. Edmonds, J. [1970]: Submodular functions, matroids and certain polyhedra. In: Combinatorial Structures and Their Applications; Proceedings of the Calgary International Conference on Combinatorial Structures and Their Applications 1969 (R. Guy, H. Hanani, N. Sauer, J. Schönheim, eds.), Gordon and Breach, New York 1970, pp. 69–87Google Scholar
  14. Edmonds, J. [1973]: Edge-disjoint branchings. In: Combinatorial Algorithms (R. Rustin, ed.), Algorithmic Press, New York 1973, pp. 91–96Google Scholar
  15. Fortune, S. [1987]: A sweepline algorithm for Voronoi diagrams. Algorithmica 2 (1987), 153–174Google Scholar
  16. Frank, A. [1981]: On disjoint trees and arborescences. In: Algebraic Methods in Graph Theory; Colloquia Mathematica Societatis János Bolyai 25 (L. Lovász, V.T. Sós, eds.), North-Holland, Amsterdam 1981, pp. 159–169Google Scholar
  17. Frank, A. [1979]: Covering branchings. Acta Scientiarum Mathematicarum (Szeged) 41 (1979), 77–82Google Scholar
  18. Fredman, M.L., and Tarjan, R.E. [1987]: Fibonacci heaps and their uses in improved network optimization problems. Journal of the ACM 34 (1987), 596–615Google Scholar
  19. Fredman, M.L., and Willard, D.E. [1994]: Trans-dichotomous algorithms for minimum spanning trees and shortest paths. Journal of Computer and System Sciences 48 (1994), 533–551Google Scholar
  20. Fujishige, S. [2010]: A note on disjoint arborescences. Combinatorica 30 (2010), 247–252Google Scholar
  21. Fulkerson, D.R. [1974]: Packing rooted directed cuts in a weighted directed graph. Mathematical Programming 6 (1974), 1–13Google Scholar
  22. Gabow, H.N. [1995]: A matroid approach to finding edge connectivity and packing arborescences. Journal of Computer and System Sciences 50 (1995), 259–273Google Scholar
  23. Gabow, H.N., Galil, Z., and Spencer, T. [1989]: Efficient implementation of graph algorithms using contraction. Journal of the ACM 36 (1989), 540–572Google Scholar
  24. Gabow, H.N., Galil, Z., Spencer, T., and Tarjan, R.E. [1986]: Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica 6 (1986), 109–122Google Scholar
  25. Gabow, H.N., and Manu, K.S. [1998]: Packing algorithms for arborescences (and spanning trees) in capacitated graphs. Mathematical Programming B 82 (1998), 83–109Google Scholar
  26. Jarník, V. [1930]: O jistém problému minimálním. Práca Moravské Pr̆írodovĕdecké Spolec̆nosti 6 (1930), 57–63Google Scholar
  27. Karger, D., Klein, P.N., and Tarjan, R.E. [1995]: A randomized linear-time algorithm to find minimum spanning trees. Journal of the ACM 42 (1995), 321–328Google Scholar
  28. Karp, R.M. [1972]: A simple derivation of Edmonds’ algorithm for optimum branchings. Networks 1 (1972), 265–272Google Scholar
  29. King, V. [1997]: A simpler minimum spanning tree verification algorithm. Algorithmica 18 (1997), 263–270Google Scholar
  30. Knuth, D.E. [1992]: Axioms and hulls; LNCS 606. Springer, Berlin 1992Google Scholar
  31. Korte, B., and Nešetřil, J. [2001]: Vojtĕch Jarník’s work in combinatorial optimization. Discrete Mathematics 235 (2001), 1–17Google Scholar
  32. Kruskal, J.B. [1956]: On the shortest spanning subtree of a graph and the travelling salesman problem. Proceedings of the AMS 7 (1956), 48–50Google Scholar
  33. Lovász, L. [1976]: On two minimax theorems in graph. Journal of Combinatorial Theory B 21 (1976), 96–103Google Scholar
  34. Nash-Williams, C.S.J.A. [1961]: Edge-disjoint spanning trees of finite graphs. Journal of the London Mathematical Society 36 (1961), 445–450Google Scholar
  35. Nash-Williams, C.S.J.A. [1964]: Decompositions of finite graphs into forests. Journal of the London Mathematical Society 39 (1964), 12Google Scholar
  36. Nešetřil, J., Milková, E., and Nešetřilová, H. [2001]: Otakar Borůvka on minimum spanning tree problem. Translation of both the 1926 papers, comments, history. Discrete Mathematics 233 (2001), 3–36Google Scholar
  37. Pettie, S., and Ramachandran, V. [2002]: An optimal minimum spanning tree algorithm. Journal of the ACM 49 (2002), 16–34Google Scholar
  38. Prim, R.C. [1957]: Shortest connection networks and some generalizations. Bell System Technical Journal 36 (1957), 1389–1401Google Scholar
  39. Prüfer, H. [1918]: Neuer Beweis eines Satzes über Permutationen. Arch. Math. Phys. 27 (1918), 742–744Google Scholar
  40. Shamos, M.I., and Hoey, D. [1975]: Closest-point problems. Proceedings of the 16th Annual IEEE Symposium on Foundations of Computer Science (1975), 151–162Google Scholar
  41. Sylvester, J.J. [1857]: On the change of systems of independent variables. Quarterly Journal of Mathematics 1 (1857), 42–56Google Scholar
  42. Tarjan, R.E. [1975]: Efficiency of a good but not linear set union algorithm. Journal of the ACM 22 (1975), 215–225Google Scholar
  43. Tutte, W.T. [1961]: On the problem of decomposing a graph into n connected factor. Journal of the London Mathematical Society 36 (1961), 221–230Google Scholar
  44. Zhou, H., Shenoy, N., and Nicholls, W. [2002]: Efficient minimum spanning tree construction without Delaunay triangulation. Information Processing Letters 81 (2002), 271–276Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Bernhard Korte
    • 1
  • Jens Vygen
    • 1
  1. 1.Research Institute for Discrete MathematicsUniversity of BonnBonnGermany

Personalised recommendations