Advertisement

Network Design Problems

  • Bernhard Korte
  • Jens Vygen
Chapter
Part of the Algorithms and Combinatorics book series (AC, volume 21)

Abstract

Connectivity is a very important concept in combinatorial optimization. In Chapter  8 we showed how to compute the connectivity between each pair of vertices of an undirected graph. Now we are looking for subgraphs that satisfy certain connectivity requirements.

References

General Literature

  1. Cheng, X., and Du, D.-Z. [2001]: Steiner Trees in Industry. Kluwer, Dordrecht 2001Google Scholar
  2. Du, D.-Z., Smith, J.M., and Rubinstein, J.H. [2000]: Advances in Steiner Trees. Kluwer, Boston 2000Google Scholar
  3. Goemans, M.X., and Williamson, D.P. [1996]: The primal-dual method for approximation algorithms and its application to network design problems. In: Approximation Algorithms for NP-Hard Problems. (D.S. Hochbaum, ed.), PWS, Boston, 1996Google Scholar
  4. Grötschel, M., Monma, C.L., and Stoer, M. [1995]: Design of survivable networks. In: Handbooks in Operations Research and Management Science; Volume 7; Network Models (M.O. Ball, T.L. Magnanti, C.L. Monma, G.L. Nemhauser, eds.), Elsevier, Amsterdam 1995Google Scholar
  5. Gupta, A., and Könemann, J. [2011]: Approximation algorithms for network design: a survey. Surveys in Operations Research and Management Science 16 (2011) 3–20Google Scholar
  6. Hwang, F.K., Richards, D.S., and Winter, P. [1992]: The Steiner Tree Problem; Annals of Discrete Mathematics 53. North-Holland, Amsterdam 1992Google Scholar
  7. Kerivin, H., and Mahjoub, A.R. [2005]: Design of survivable networks: a survey. Networks 46 (2005), 1–21Google Scholar
  8. Lau, L.C., Ravi, R., and Singh, M. [2011]: Iterative Methods in Combinatorial Optimization. Cambridge University Press 2011, Chapter 10Google Scholar
  9. Prömel, H.J., and Steger, A. [2002]: The Steiner Tree Problem. Vieweg, Braunschweig 2002Google Scholar
  10. Stoer, M. [1992]: Design of Survivable Networks. Springer, Berlin 1992Google Scholar
  11. Vazirani, V.V. [2001]: Approximation Algorithms. Springer, Berlin 2001, Chapters 22 and 23Google Scholar

Cited References

  1. Agrawal, A., Klein, P.N., and Ravi, R. [1995]: When trees collide: an approximation algorithm for the generalized Steiner tree problem in networks. SIAM Journal on Computing 24 (1995), 440–456Google Scholar
  2. Arora, S. [1998]: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. Journal of the ACM 45 (1998), 753–782Google Scholar
  3. Berman, P., and Ramaiyer, V. [1994]: Improved approximations for the Steiner tree problem. Journal of Algorithms 17 (1994), 381–408Google Scholar
  4. Bern, M., and Plassmann, P. [1989]: The Steiner problem with edge lengths 1 and 2. Information Processing Letters 32 (1989), 171–176Google Scholar
  5. Bertsimas, D., and Teo, C. [1995]: From valid inequalities to heuristics: a unified view of primal-dual approximation algorithms in covering problems. Operations Research 46 (1998), 503–514Google Scholar
  6. Bertsimas, D., and Teo, C. [1997]: The parsimonious property of cut covering problems and its applications. Operations Research Letters 21 (1997), 123–132Google Scholar
  7. Björklund, A., Husfeldt, T., Kaski, P., and Koivisto, M. [2007]: Fourier meets Möbius: fast subset convolution. Proceedings of the 39th Annual ACM Symposium on Theory of Computing (2007), 67–74Google Scholar
  8. Borchers, A., and Du, D.-Z. [1997]: The k-Steiner ratio in graphs. SIAM Journal on Computing 26 (1997), 857–869Google Scholar
  9. Borradaile, G., Klein, P., and Mathieu, C., [2009]: An O(nlogn) approximation scheme for Steiner tree in planar graphs. ACM Transactions on Algorithms 5 (2009), Article 31Google Scholar
  10. Byrka, J., Grandoni, F., Rothvoß, T., and Sanità, L. [2013]: Steiner tree approximation via iterative randomized rounding. Journal of the ACM 60 (2013), Article 6Google Scholar
  11. Chakraborty, T., Chuzhoy, J., and Khanna, S. [2008]: Network design for vertex connectivity. Proceedings of the 40th Annual ACM Symposium on Theory of Computing (2008), 167–176Google Scholar
  12. Cheriyan, J., and Vetta, A. [2007]: Approximation algorithms for network design with metric costs. SIAM Journal on Discrete Mathematics 21 (2007), 612–636Google Scholar
  13. Chlebík, M., and Chlebíková, J. [2008]: The Steiner tree problem on graphs: Inapproximability results. Theoretical Computer Science 406 (2008), 207–214Google Scholar
  14. Choukhmane, E. [1978]: Une heuristique pour le problème de l’arbre de Steiner. RAIRO Recherche Opérationnelle 12 (1978), 207–212 [in French]Google Scholar
  15. Chuzhoy, J., and Khanna, S. [2009]: An O(k 3logn)-approximation algorithm for vertex-connectivity survivable network design. Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science (2009), 437–441Google Scholar
  16. Dreyfus, S.E., and Wagner, R.A. [1972]: The Steiner problem in graphs. Networks 1 (1972), 195–207Google Scholar
  17. Du, D.-Z., Zhang, Y., and Feng, Q. [1991]: On better heuristic for Euclidean Steiner minimum trees. Proceedings of the 32nd Annual IEEE Symposium on Foundations of Computer Science (1991), 431–439. See also Mathematical Programming 57 (1992) 193–202Google Scholar
  18. Erickson, R.E., Monma, C.L., and Veinott, A.F., Jr. [1987]: Send-and-split method for minimum concave-cost network flows. Mathematics of Operations Research 12 (1987), 634–664Google Scholar
  19. Fleischer, L., Jain, K., and Williamson, D.P. [2006]: Iterative rounding 2-approximation algorithms for minimum-cost vertex connectivity problems. Journal of Computer and System Sciences 72 (2006), 838–867Google Scholar
  20. Fuchs, B., Kern, W., Mölle, D., Richter, S., Rossmanith, P., and Wang, X. [2007]: Dynamic programming for minimum Steiner trees. Theory of Computing Systems 41 (2007), 493–500Google Scholar
  21. Gabow, H.N. [2005]: An improved analysis for approximating the smallest k-edge connected spanning subgraph of a multigraph. SIAM Journal on Discrete Mathematics 19 (2005), 1–18Google Scholar
  22. Gabow, H.N., Goemans, M.X., and Williamson, D.P. [1998]: An efficient approximation algorithm for the survivable network design problem. Mathematical Programming B 82 (1998), 13–40Google Scholar
  23. Gabow, H.N., Goemans, M.X., Tardos, É., and Williamson, D.P. [2009]: Approximating the smallest k-edge connected spanning subgraph by LP-rounding. Networks 53 (2009), 345–357Google Scholar
  24. Garey, M.R., Graham, R.L., and Johnson, D.S. [1977]: The complexity of computing Steiner minimal trees. SIAM Journal of Applied Mathematics 32 (1977), 835–859Google Scholar
  25. Garey, M.R., and Johnson, D.S. [1977]: The rectilinear Steiner tree problem is NP-complete. SIAM Journal on Applied Mathematics 32 (1977), 826–834Google Scholar
  26. Gilbert, E.N., and Pollak, H.O. [1968]: Steiner minimal trees. SIAM Journal on Applied Mathematics 16 (1968), 1–29Google Scholar
  27. Goemans, M.X., and Bertsimas, D.J. [1993]: Survivable networks, linear programming and the parsimonious property, Mathematical Programming 60 (1993), 145–166Google Scholar
  28. Goemans, M.X., Goldberg, A.V., Plotkin, S., Shmoys, D.B., Tardos, É., and Williamson, D.P. [1994]: Improved approximation algorithms for network design problems. Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms (1994), 223–232Google Scholar
  29. Goemans, M.X., Olver, N., Rothvoß, T., and Zenklusen, R. [2012]: Matroids and integrality gaps for hypergraphic Steiner tree relaxations. Proceedings of the 44th Annual ACM Symposium on Theory of Computing (2012), 1161–1176Google Scholar
  30. Goemans, M.X., and Williamson, D.P. [1995]: A general approximation technique for constrained forest problems. SIAM Journal on Computing 24 (1995), 296–317Google Scholar
  31. Goyal, N., Olver, N., and Shepherd, F.B. [2013]: The VPN conjecture is true. Journal of the ACM 60 (2013), Article 17Google Scholar
  32. Grandoni, F., Kaibel, V., Oriolo, G., and Skutella, M. [2008]: A short proof of the VPN tree routing conjecture on ring networks. Operations Research Letters 36 (2008), 361–365Google Scholar
  33. Gröpl, C., Hougardy, S., Nierhoff, T., and Prömel, H.J. [2001]: Approximation algorithms for the Steiner tree problem in graphs. In: Cheng and Du [2001], pp. 235–279Google Scholar
  34. Gupta, A., Kleinberg, J., Kumar, A., Rastogi, R., and Yener, B. [2001]: Provisioning a virtual private network: a network design problem for multicommodity flow. Proceedings of the 33th Annual ACM Symposium on Theory of Computing (2001), 389–398Google Scholar
  35. Hanan, M. [1966]: On Steiner’s problem with rectilinear distance. SIAM Journal on Applied Mathematics 14 (1966), 255–265Google Scholar
  36. Hetzel, A. [1995]: Verdrahtung im VLSI-Design: Spezielle Teilprobleme und ein sequentielles Lösungsverfahren. Ph.D. thesis, University of Bonn, 1995 [in German]Google Scholar
  37. Hougardy, S., and Prömel, H.J. [1999]: A 1. 598 approximation algorithm for the Steiner tree problem in graphs. Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (1999), 448–453Google Scholar
  38. Hougardy, S., Silvanus, J., and Vygen, J. [2017]: Dijkstra meets Steiner: a fast exact goal-oriented Steiner tree algorithm. Mathematical Programming Computation 9 (2017), 135–202Google Scholar
  39. Hwang, F.K. [1976]: On Steiner minimal trees with rectilinear distance. SIAM Journal on Applied Mathematics 30 (1976), 104–114Google Scholar
  40. Jain, K. [2001]: A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica 21 (2001), 39–60Google Scholar
  41. Jothi, R., Raghavachari, B., and Varadarajan, S. [2003]: A 5/4-approximation algorithm for minimum 2-edge-connectivity. Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (2003), 725–734Google Scholar
  42. Karp, R.M. [1972]: Reducibility among combinatorial problems. In: Complexity of Computer Computations (R.E. Miller, J.W. Thatcher, eds.), Plenum Press, New York 1972, pp. 85–103Google Scholar
  43. Karpinski, M., and Zelikovsky, A. [1997]: New approximation algorithms for Steiner tree problems. Journal of Combinatorial Optimization 1 (1997), 47–65Google Scholar
  44. Khuller, S., and Raghavachari, B. [1996]: Improved approximation algorithms for uniform connectivity problems. Journal of Algorithms 21 (1996), 434–450Google Scholar
  45. Khuller, S., and Vishkin, U. [1994]: Biconnectivity augmentations and graph carvings. Journal of the ACM 41 (1994), 214–235Google Scholar
  46. Klein, P.N., and Ravi, R. [1993]: When cycles collapse: a general approximation technique for constrained two-connectivity problems. Proceedings of the 3rd Integer Programming and Combinatorial Optimization Conference (1993), 39–55Google Scholar
  47. Könemann, J., Olver, N., Pashkovish, K., Ravi, R., Swamy, C., Vygen, J. [2017]: On the integrality gap of the prize-collecting Steiner forest LP. Proceedings of APPROX 2017, Article 17Google Scholar
  48. Korte, B., Prömel, H.J., and Steger, A. [1990]: Steiner trees in VLSI-layout. In: Paths, Flows, and VLSI-Layout (B. Korte, L. Lovász, H.J. Prömel, A. Schrijver, eds.), Springer, Berlin 1990, pp. 185–214Google Scholar
  49. Kortsarz, G., Krauthgamer, R., and Lee, J.R. [2004]: Hardness of approximation for vertex-connectivity network design problems. SIAM Journal on Computing 33 (2004), 704–720Google Scholar
  50. Kou, L.T. [1990]: On efficient implementation of an approximation algorithm for the Steiner tree problem. Acta Informatica 27 (1990), 369–380Google Scholar
  51. Kou, L., Markowsky, G., and Berman, L. [1981]: A fast algorithm for Steiner trees. Acta Informatica 15 (1981), 141–145Google Scholar
  52. Martin, A. [1992]: Packen von Steinerbäumen: Polyedrische Studien und Anwendung. Ph.D. thesis, Technical University of Berlin 1992 [in German]Google Scholar
  53. Mehlhorn, K. [1988]: A faster approximation algorithm for the Steiner problem in graphs. Information Processing Letters 27 (1988), 125–128Google Scholar
  54. Melkonian, V., and Tardos, É. [2004]: Algorithms for a network design problem with crossing supermodular demands. Networks 43 (2004), 256–265Google Scholar
  55. Nagarajan, V., Ravi, R., and Singh, M. [2010]: Simpler analysis of LP extreme points for traveling salesman and survivable network design problems. Operations Research Letters 38 (2010), 156–160Google Scholar
  56. Robins, G., and Zelikovsky, A. [2005]: Tighter bounds for graph Steiner tree approximation. SIAM Journal on Discrete Mathematics 19 (2005), 122–134Google Scholar
  57. Takahashi, M., and Matsuyama, A. [1980]: An approximate solution for the Steiner problem in graphs. Mathematica Japonica 24 (1980), 573–577Google Scholar
  58. Vygen, J. [2011]: Faster algorithm for optimum Steiner trees. Information Processing Letters 111 (2011), 1075–1079Google Scholar
  59. Warme, D.M., Winter, P., and Zachariasen, M. [2000]: Exact algorithms for plane Steiner tree problems: a computational study. In: Advances in Steiner trees (D.-Z. Du, J.M. Smith, J.H. Rubinstein, eds.), Kluwer Academic Publishers, Boston, 2000, pp. 81–116Google Scholar
  60. Williamson, D.P., Goemans, M.X., Mihail, M., and Vazirani, V.V. [1995]: A primal-dual approximation algorithm for generalized Steiner network problems. Combinatorica 15 (1995), 435–454Google Scholar
  61. Zelikovsky, A.Z. [1993]: An 11/6-approximation algorithm for the network Steiner problem. Algorithmica 9 (1993), 463–470Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Bernhard Korte
    • 1
  • Jens Vygen
    • 1
  1. 1.Research Institute for Discrete MathematicsUniversity of BonnBonnGermany

Personalised recommendations