Advertisement

The Knapsack Problem

  • Bernhard Korte
  • Jens Vygen
Chapter
Part of the Algorithms and Combinatorics book series (AC, volume 21)

Abstract

The MINIMUM WEIGHT PERFECT MATCHING PROBLEM and the WEIGHTED MATROID INTERSECTION PROBLEM discussed in earlier chapters are among the “hardest” problems for which a polynomial-time algorithm is known. In this chapter we deal with the following problem which turns out to be, in a sense, the “easiest” NP-hard problem:

References

General Literature

  1. Garey, M.R., and Johnson, D.S. [1979]: Computers and Intractability; A Guide to the Theory of NP-Completeness. Freeman, San Francisco 1979, Chapter 4Google Scholar
  2. Kellerer, H., Pferschy, U., and Pisinger, D. [2004]: Knapsack Problems. Springer, Berlin 2004Google Scholar
  3. Martello, S., and Toth, P. [1990]: Knapsack Problems; Algorithms and Computer Implementations. Wiley, Chichester 1990Google Scholar
  4. Papadimitriou, C.H., and Steiglitz, K. [1982]: Combinatorial Optimization; Algorithms and Complexity. Prentice-Hall, Englewood Cliffs 1982, Sections 16.2, 17.3, and 17.4Google Scholar

Cited References

  1. Balas, E., and Zemel, E. [1980]: An algorithm for large zero-one knapsack problems. Operations Research 28 (1980), 1130–1154Google Scholar
  2. Beier, R., Röglin, H., and Vöcking, B. [2007]: The smoothed number of Pareto optimal solutions in bicriteria integer optimization. In: Integer Programming and Combinatorial Optimization; Proceedings of the 12th International IPCO Conference; LNCS 4513 (M. Fischetti, D.P. Williamson, eds.), Springer, Berlin 2007, pp. 53–67Google Scholar
  3. Beier, R., and Vöcking, B. [2006]: An experimental study of random knapsack problems. Algorithmica 45 (2006), 121–136Google Scholar
  4. Bellman, R. [1956]: Notes on the theory of dynamic programming IV – maximization over discrete sets. Naval Research Logistics Quarterly 3 (1956), 67–70Google Scholar
  5. Bellman, R. [1957]: Comment on Dantzig’s paper on discrete variable extremum problems. Operations Research 5 (1957), 723–724Google Scholar
  6. Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., and Tarjan, R.E. [1973]: Time bounds for selection. Journal of Computer and System Sciences 7 (1973), 448–461Google Scholar
  7. Carr, R.D., Fleischer, L.K., Leung, V.J., and Phillips, C.A. [2000]: Strengthening integrality gaps for capacitated network design and covering problems. Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (2000), 106–115Google Scholar
  8. Chan, T.M. [2018]: Approximation schemes for 0-1 knapsack. Proceedings of the 1st Symposium on Simplicity in Algorithms (2018), Article 5Google Scholar
  9. Dantzig, G.B. [1957]: Discrete variable extremum problems. Operations Research 5 (1957), 266–277Google Scholar
  10. Frieze, A.M. and Clarke, M.R.B. [1984]: Approximation algorithms for the m-dimensional 0-1 knapsack problem: worst case and probabilistic analyses. European Journal of Operations Research 15 (1984), 100–109Google Scholar
  11. Garey, M.R., and Johnson, D.S. [1978]: Strong NP-completeness results: motivation, examples, and implications. Journal of the ACM 25 (1978), 499–508Google Scholar
  12. Gens, G.V., and Levner, E.V. [1979]: Computational complexity of approximation algorithms for combinatorial problems. In: Mathematical Foundations of Computer Science; LNCS 74 (J. Becvar, ed.), Springer, Berlin 1979, pp. 292–300Google Scholar
  13. Ibarra, O.H., and Kim, C.E. [1975]: Fast approximation algorithms for the knapsack and sum of subset problem. Journal of the ACM 22 (1975), 463–468Google Scholar
  14. Karp, R.M. [1972]: Reducibility among combinatorial problems. In: Complexity of Computer Computations (R.E. Miller, J.W. Thatcher, eds.), Plenum Press, New York 1972, pp. 85–103Google Scholar
  15. Kellerer, H., and Pferschy, U. [2004]: Improved dynamic programming in connection with an FPTAS for the knapsack problem. Journal on Combinatorial Optimization 8 (2004), 5–11Google Scholar
  16. Korte, B., and Schrader, R. [1981]: On the existence of fast approximation schemes. In: Nonlinear Programming; Vol. 4 (O. Mangaserian, R.R. Meyer, S.M. Robinson, eds.), Academic Press, New York 1981, pp. 415–437Google Scholar
  17. Lawler, E.L. [1979]: Fast approximation algorithms for knapsack problems. Mathematics of Operations Research 4 (1979), 339–356Google Scholar
  18. Nemhauser, G.L., and Ullmann, Z. [1969]: Discrete dynamic programming and capital allocation. Management Science 15 (1969), 494–505Google Scholar
  19. Pisinger, D. [1999]: Linear time algorithms for knapsack problems with bounded weights. Journal of Algorithms 33 (1999), 1–14Google Scholar
  20. Sahni, S. [1975]: Approximate algorithms for the 0/1 knapsack problem. Journal of the ACM 22 (1975), 115–124Google Scholar
  21. Vygen, J. [1997]: The two-dimensional weighted median problem. Zeitschrift für Angewandte Mathematik und Mechanik 77 (1997), Supplement, S433–S436Google Scholar
  22. Woeginger, G.J. [2000]: When does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)? INFORMS Journal on Computing 12 (2000), 57–74Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Bernhard Korte
    • 1
  • Jens Vygen
    • 1
  1. 1.Research Institute for Discrete MathematicsUniversity of BonnBonnGermany

Personalised recommendations