Skip to main content

Das Versagen der Immunantwort

  • Chapter
  • First Online:
Janeway Immunologie

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Murphy .

Appendices

Aufgaben

1 13.1 Bitte zuordnen

Welcher der folgenden Gendefekte hängt mit welcher Immunschwäche zusammen?

A.

Mutationen der gemeinsamen γ-Kette _____

i.

Omenn-Syndrom

B.

hypomorphe Mutationen in RAG-1 oder RAG-2 _____

ii.

SCID in Kombination mit einer anormalen Entwicklung des Thymus

C.

Defekte in DNA-PKcs oder Artemis _____

iii.

X-gekoppeltes SCID-Syndrom

D.

Mutationen in FOXN1 _____

iv.

Autoimmun-Polyendokrinopathie-Candidiasis-Ektodermale Dystrophie-Syndrom

E.

Mutationen in TAP1 oder TAP2 _____

v.

MHC-Klasse-I-Defekt

F.

Defekte in AIRE _____

vi.

RS-SCID

1 13.2 Richtig oder falsch

Personen, die Mutationen in den Genen tragen, die die IL-12-p40-Untereinheit codieren, sind nicht nur für Krankheitserreger wie M. tuberculosis anfällig, für deren Bekämpfung eine TH1-Reaktion erforderlich ist, sondern es sind auch Typ-3-(TH17-)Reaktionen betroffen.

1 13.3 Kurze Antwort

Welche zwei genetisch bedingte Defekte führen zum Fehlen von CD8+-T-Zellen, während die CD4+-T-Zellen erhalten bleiben, und welcher genetische Defekt führt zum Fehlen der CD4+-T-Zellen, während die CD8+-T-Zellen erhalten bleiben?

1 13.4 Kurze Antwort

Sowohl der CD40L-Defekt als auch der AID-Defekt führen zu einem Hyper-IgM-Syndrom, aber beim CD40L-Defekt ist die T-Zell-Funktion stark beeinträchtigt, während sie beim AID-Defekt erhalten bleibt. Warum ist das so?

1 13.5 Richtig oder falsch

Das variable Immundefektsyndrom (CVID) beeinträchtigt sowohl die T-Zell- als auch die Antikörperreaktionen.

1 13.6 Multiple Choice

Welche der folgenden vererbbaren Krankheiten hat keinen autoimmunen oder autoinflammatorischen Phänotyp?

  1. A.

    Autoimmun-Polyendokrinopathie-Candidiasis-Ektodermale Dystrophie-Syndrom (APECED), hervorgerufen durch Defekte im AIRE-Gen

  2. B.

    familiäres Mittelmeerfieber (FMF), hervorgerufen durch Mutationen im Pyringen

  3. C.

    Omenn-Syndrom, hervorgerufen durch hypomorphe Mutationen in RAG-1 oder RAG-2

  4. D.

    Wiskott-Aldrich-Syndrom (WAS), hervorgerufen durch einen WAS-Defekt

  5. E.

    Hyper-IgE-Syndrom (Job-Syndrom), hervorgerufen durch Mutationen in STAT3 oder DOCK8

  6. F.

    chronische Granulomatose (CGD), hervorgerufen durch die Produktion von reaktiven Sauerstoffspezies in den Phagocyten

1 13.7 Multiple Choice

Pyogene Bakterien sind durch Polysaccharidkapseln vor der Erkennung durch Rezeptoren auf Makrophagen und neutrophilen Zellen geschützt. Die antikörperabhängige Opsonisierung ist einer der Mechanismen, durch deren Wirkung Phagocyten diese Bakterien in sich aufnehmen und zerstören können. Welche der folgenden Krankheiten oder Defekte betrifft direkt einen Mechanismus, durch den das Immunsystem Infektionen dieser Bakterien kontrolliert?

  1. A.

    Il-12-p40-Defekt

  2. B.

    Defekte im AIRE-Gen

  3. C.

    WASp-Defekt

  4. D.

    Defekte in C3

1 13.8 Multiple Choice

In welchem der folgenden Gene führt ein Defekt zu einem ähnlichen Phänotyp wie Defekte im ELA2-Gen, das die Neutrophilen-Elastase codiert?

  1. A.

    GFI1

  2. B.

    CD55 (codiert DAF)

  3. C.

    CD59

  4. D.

    XIAP

1 13.9 Bitte ergänzen

Welches Protein hängt mit welcher Funktion von phagocytotischen Zellen zusammen?

A.

Kindlin-3 _____

i.

Produktion

B.

Neutrophilen-Elastase _____

ii.

Adhäsion

C.

Myeloperoxidase _____

iii.

Aktivierung

D.

MyD88 _____

iv.

Abtöten von Mikroorganismen

1 13.10 Multiple Choice

Welcher der folgenden Krankheitserreger entkommt dem Immunsystem primär durch eine Variabilität der Antigene?

  1. A.

    Influenza-A-Virus

  2. B.

    Herpes-simplex-Virus 1

  3. C.

    Cytomegalievirus

  4. D.

    Trypanosoma brucei

  5. E.

    Plasmodium falciparum

  6. F.

    Hepatitis-B-Virus

1 13.11 Multiple Choice

Das humane Immunschwächevirus (HIV) produziert verschiedene Immunevasine. Eines davon, Nef, ist ungewöhnlich pleiotrop und ein wichtiges Zielmolekül für CD8+-T-Zell-Reaktionen. Welche der folgenden Funktionen hängt nicht mit Nef zusammen?

  1. A.

    Hemmung des Restriktionsfaktors SAMHD1

  2. B.

    Herunterregulieren von MHC-Klasse-I

  3. C.

    Herunterregulieren von CD4

  4. D.

    Herunterregulieren von MHC-Klasse-II

  5. E.

    Aufrechterhalten der T-Zell-Aktivierung

1 13.12 Bitte ergänzen

Das humane Immunschwächevirus (HIV) wird den Retroviren zugeordnet, da es das Enzym _______ enthält. Das Virus infiziert Wirtszellen, indem es über seine Hülle an den _______-Rezeptor und entweder an den _______- oder den _______-Corezeptor bindet. Wenn ein Individuum infiziert wird, entwickelt sich eine Immunantwort, die zur Produktion von Anti-HIV-Antikörpern führt; diesen Vorgang bezeichnet man als _______. Es entwickeln sich auch CD8+-T-Zell-Reaktionen, aber HIV kann _______ entwickeln, die es dem Virus ermöglichen, diesen CTL zu entkommen.

1 13.13 Multiple Choice

Welche der folgenden Konstellationen ist keine genetische Variante, die die Anfälligkeit gegenüber einer HIV-Infektion verringert oder das Voranschreiten von AIDS verlangsamt?

  1. A.

    mutiertes CCR5-Allel

  2. B.

    mutiertes CXCR4-Allel

  3. C.

    bestimmte HLA-Klasse-I-Allele

  4. D.

    KIR-3DS1 mit bestimmten HLA-B-Allelen

Literatur

1.1 Allgemeine Literatur

  • ■ Alcami, A. and Koszinowski, U.H.: Viral mechanisms of immune evasion. Immunol. Today 2000, 21:447–455.

  • ■ De Cock, K.M., Mbori-Ngacha, D., and Marum, E.: Shadow on the continent: public health and HIV/AIDS in Africa in the 21st century. Lancet 2002, 360:67–72.

  • ■ Finlay, B.B. and McFadden, G.: Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 2006, 124:767–782.

  • ■ Hill, A.V.: The immunogenetics of human infectious diseases. Annu. Rev. Immunol. 1998, 16:593–617.

  • ■ Lederberg, J.: Infectious history. Science 2000, 288:287–293.

  • ■ Notarangelo, L.D.: Primary immunodeficiencies. J. Allergy Clin. Immunol. 2010, 125:S182–S194.

  • ■ Xu, X.N., Screaton, G.R., and McMichael, A.J.: Virus infections: escape, resistance, and counterattack. Immunity 2001, 15:867–870.

1.2 Literatur zu den einzelnen Abschnitten

1.2.1 Abschnitt 13.1.1

  • ■ Carneiro-Sampaio, M. and Coutinho, A.: Immunity to microbes: lessons from primary immunodeficiencies. Infect. Immun. 2007, 75:1545–1555.

  • ■ Cunningham-Rundles, C. and Ponda, P.P.: Molecular defects in T- and B-cell primary immunodeficiency diseases. Nat. Rev. Immunol. 2005, 5:880–892.

1.2.2 Abschnitt 13.1.2

  • ■ Bolze, A., Mahlaoui, N., Byun, M., Turner, B., Trede, N., Ellis, S.R., Abhyankar, A., Itan, Y., Patin, E., Brebner, S., et al.: Ribosomal protein SA haploinsufficiency in humans with isolated congenital asplenia. Science 2013, 340:976–978.

  • ■ Cunningham-Rundles, C. and Ponda, P.P.: Molecular defects in T- and B-cell primary immunodeficiency diseases. Nat. Rev. Immunol. 2005, 5:880–892.

  • ■ Kokron, C.M., Bonilla, F.A., Oettgen, H.C., Ramesh, N., Geha, R.S., and Pandolfi, F.: Searching for genes involved in the pathogenesis of primary immunodeficiency diseases: lessons from mouse knockouts. J. Clin. Immunol. 1997, 17:109–126.

  • ■ Koss, M., Bolze, A., Brendolan, A., Saggese, M., Capellini, T.D., Bojilova, E., Boisson, B., Prall, O.W.J., Elliott, D.A., Solloway, M., et al.: Congenital asplenia in mice and humans with mutations in a Pbx/Nkx2-5/p15 module. Dev. Cell 2012, 22:913–926.

  • ■ Marodi, L. and Notarangelo, L.D.: Immunological and genetic bases of new primary immunodeficiencies. Nat. Rev. Immunol. 2007, 7:851–861.

1.2.3 Abschnitt 13.1.3

  • ■ Buckley, R.H., Schiff, R.I., Schiff, S.E., Markert, M.L., Williams, L.W., Harville, T.O., Roberts, J.L., and Puck, J.M.: Human severe combined immunodeficiency: genetic, phenotypic, and functional diversity in one hundred eight infants. J. Pediatr. 1997, 130:378–387.

  • ■ Leonard, W.J.: The molecular basis of X linked severe combined immunodeficiency. Annu. Rev. Med. 1996, 47:229–239.

  • ■ Leonard, W.J.: Cytokines and immunodeficiency diseases. Nat. Rev. Immunol. 2001, 1:200–208.

  • ■ Stephan, J.L., Vlekova, V., Le Deist, F., Blanche, S., Donadieu, J., De Saint-Basile, G., Durandy, A., Griscelli, C., and Fischer, A.: Severe combined immunodeficiency: a retrospective single-center study of clinical presentation and outcome in 117 patients. J. Pediatr. 1993, 123:564–572.

1.2.4 Abschnitt 13.1.4

  • ■ Hirschhorn, R.: Adenosine deaminase deficiency: molecular basis and recent developments. Clin. Immunol. Immunopathol. 1995, 76:S219–S227.

1.2.5 Abschnitt 13.1.5

  • ■ Bosma, M.J. and Carroll, A.M.: The SCID mouse mutant: definition, characterization, and potential uses. Annu. Rev. Immunol. 1991, 9:323–350.

  • ■ Fugmann, S.D.: DNA repair: breaking the seal. Nature 2002, 416:691–694.

  • ■ Gennery, A.R., Cant, A.J., and Jeggo, P.A.: Immunodeficiency associated with DNA repair defects. Clin. Exp. Immunol. 2000, 121:1–7.

  • ■ Moshous, D., Callebaut, I., de Chasseval, R., Corneo, B., Cavazzana-Calvo, M., Le Deist, F., Tezcan, I., Sanal, O., Bertrand, Y., Philippe, N., et al.: Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 2001, 105:177–186.

1.2.6 Abschnitt 13.1.6

  • ■ Castigli, E., Pahwa, R., Good, R.A., Geha, R.S., and Chatila, T.A.: Molecular basis of a multiple lymphokine deficiency in a patient with severe combined immunodeficiency. Proc. Natl Acad. Sci. USA 1993, 90:4728–4732.

  • ■ Kung, C., Pingel, J.T., Heikinheimo, M., Klemola, T., Varkila, K., Yoo, L.I., Vuopala, K., Poyhonen, M., Uhari, M., Rogers, M., et al.: Mutations in the tyrosine phosphatase CD45 gene in a child with severe combined immunodeficiency disease. Nat. Med. 2000, 6:343–345.

  • ■ Roifman, C.M., Zhang, J., Chitayat, D., and Sharfe, N.: A partial deficiency of interleukin-7R α is sufficient to abrogate T-cell development and cause severe combined immunodeficiency. Blood 2000, 96:2803–2807.

1.2.7 Abschnitt 13.1.7

  • ■ Coffer, P.J. and Burgering, B.M.: Forkhead-box transcription factors and their role in the immune system. Nat. Rev. Immunol. 2004, 4:889–899.

  • ■ DiSanto, J.P., Keever, C.A., Small, T.N., Nicols, G.L., O’Reilly, R.J., and Flomenberg, N.: Absence of interleukin 2 production in a severe combined immunodeficiency disease syndrome with T cells. J. Exp. Med. 1990, 171:1697–1704.

  • ■ DiSanto, J.P., Rieux Laucat, F., Dautry Varsat, A., Fischer, A., and de Saint Basile, G.: Defective human interleukin 2 receptor γ chain in an atypical X chromo- some-linked severe combined immunodeficiency with peripheral T cells. Proc. Natl Acad. Sci. USA 1994, 91:9466–9470.

  • ■ Gadola, S.D., Moins-Teisserenc, H.T., Trowsdale, J., Gross, W.L., and Cerundolo, V.: TAP deficiency syndrome. Clin. Exp. Immunol. 2000, 121:173–178.

  • ■ Gilmour, K.C., Fujii, H., Cranston, T., Davies, E. G., Kinnon, C., and Gaspar, H.B.: Defective expression of the interleukin-2/interleukin-15 receptor ß subunit leads to a natural killer cell-deficient form of severe combined immunodeficiency. Blood 2001, 98:877–879.

  • ■ Grusby, M.J. and Glimcher, L.H.: Immune responses in MHC class II-deficient mice. Annu. Rev. Immunol. 1995, 13:417–435.

  • ■ Pignata, C., Gaetaniello, L., Masci, A.M., Frank, J., Christiano, A., Matrecano, E., and Racioppi, L.: Human equivalent of the mouse Nude/SCID phenotype: long-term evaluation of immunologic reconstitution after bone marrow transplanation. Blood 2001, 97:880–885.

  • ■ Steimle, V., Reith, W., and Mach, B.: Major histocompatibility complex class II deficiency: a disease of gene regulation. Adv. Immunol. 1996, 61:327–340.

1.2.8 Abschnitt 13.1.8

  • ■ Bruton, O.C.: Agammaglobulinemia. Pediatrics 1952, 9:722–728.

  • ■ Conley, M. E.: Genetics of hypogammaglobulinemia: what do we really know? Curr. Opin. Immunol. 2009, 21:466–471.

  • ■ Lee, M.L., Gale, R.P., and Yap, P.L.: Use of intravenous immunoglobulin to prevent or treat infections in persons with immune deficiency. Annu. Rev. Med. 1997, 48:93–102.

  • ■ Notarangelo, L.D.: Immunodeficiencies caused by genetic defects in protein kinases. Curr. Opin. Immunol. 1996, 8:448–453.

  • ■ Preud’homme, J.L. and Hanson, L.A.: IgG subclass deficiency. Immunodefic. Rev. 1990, 2:129–149.

1.2.9 Abschnitt 13.1.9

  • ■ Burrows, P.D. and Cooper, M.D.: IgA deficiency. Adv. Immunol. 1997, 65:245–276.

  • ■ Doffinger, R., Smahi, A., Bessia, C., Geissmann, F., Feinberg, J., Durandy, A., Bodemer, C., Kenwrick, S., Dupuis-Girod, S., Blanche, S., et al.: X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling. Nat. Genet. 2001, 27:277–285.

  • ■ Durandy, A. and Honjo, T.: Human genetic defects in class-switch recombination (hyper-IgM syndromes). Curr. Opin. Immunol. 2001, 13:543–548.

  • ■ Ferrari, S., Giliani, S., Insalaco, A., Al Ghonaium, A., Soresina, A.R., Loubser, M., Avanzini, M.A., Marconi, M., Badolato, R., Ugazio, A.G., et al.: Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc. Natl Acad. Sci. USA 2001, 98:12614–12619.

  • ■ Harris, R.S., Sheehy, A.M., Craig, H.M., Malim, M.H., and Neuberger, M.S.: DNA deamination: not just a trigger for antibody diversification but also a mechanism for defense against retroviruses. Nat. Immunol. 2003, 4:641–643.

  • ■ Minegishi, Y.: Hyper-IgE syndrome. Curr. Opin. Immunol. 2009, 21:487–492.

  • ■ Park, M.A., Li, J.T., Hagan, J.B., Maddox, D.E., and Abraham, R.S.: Common variable immunodeficiency: a new look at an old disease. Lancet 2008, 372:489–503.

  • ■ Thrasher, A.J. and Burns, S.O.: WASP: a key immunological multitasker. Nat. Rev. Immunol. 2010, 10:182–192.

  • ■ Yel, L.: Selective IgA deficiency. J. Clin. Immunol. 2010, 30:10–16.

  • ■ Yong, P.F., Salzer, U., and Grimbacher, B.: The role of costimulation in antibody deficiencies: ICOS and common variable immunodeficiency. Immunol. Rev. 2009, 229:101–113.

1.2.10 Abschnitt 13.1.10

  • ■ Browne, S.K.: Anticytokine autoantibody-associated immunodeficiency. Annu. Rev. Immunol. 2014, 32:635–657.

  • ■ Casanova, J.L. and Abel, L.: Genetic dissection of immunity to mycobacteria: the human model. Annu. Rev. Immunol. 2002, 20:581–620.

  • ■ Dupuis, S., Dargemont, C., Fieschi, C., Thomassin, N., Rosenzweig, S., Harris, J., Holland, S.M., Schreiber, R.D., and Casanova, J.L.: Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science 2001, 293:300–303.

  • ■ Lammas, D.A., Casanova, J.L., and Kumararatne, D.S.: Clinical consequences of defects in the IL-12-dependent interferon-γ (IFN-γ) pathway. Clin. Exp. Immunol. 2000, 121:417–425.

  • ■ Lanternier, F., Cypowyj, S., Picard, C., Bustamante, J., Lortholary, O., Casanova, J.-L., and Puel, A.: Primary immunodeficiencies underlying fungal infections. Curr. Opin. Pediatr. 2013, 25:736–747.

  • ■ Lanternier, F., Pathan, S., Vincent, Q.B., Liu, L., Cypowyj, S., Prando, C., Migaud, M., Taibi, L., Ammar-Khodja, A., Boudghene Stambouli, O., et al.: Deep dermatophytosis and inherited CARD9 deficiency. N. Engl. J. Med. 2013, 369:1704–1714.

  • ■ Newport, M.J., Huxley, C.M., Huston, S., Hawrylowicz, C.M., Oostra, B.A., Williamson, R., and Levin, M.: A mutation in the interferon-γ-receptor gene and susceptibility to mycobacterial infection. N. Engl. J. Med. 1996, 335:1941–1949.

  • ■ Puel, A., Döffinger, R., Natividad, A., Chrabieh, M., Barcenas-Morales, G., Picard, C., Cobat, A., Ouachée-Chardin, M., Toulon, A., Bustamante, J., et al.: Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med. 2010, 207:291–297.

  • ■ Van de Vosse, E., Hoeve, M.A., and Ottenhoff, T.H.: Human genetics of intracellular infectious diseases: molecular and cellular immunity against mycobacteria and salmonellae. Lancet Infect. Dis. 2004, 4:739–749.

1.2.11 Abschnitt 13.1.11

  • ■ de Saint Basile, G., Ménasché, G., and Fischer, A.: Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nat. Rev. Immunol. 2010, 10:568–579.

  • ■ de Saint Basille, G. and Fischer, A.: The role of cytotoxicity in lymphocyte homeostasis. Curr. Opin. Immunol. 2001, 13:549–554.

1.2.12 Abschnitt 13.1.12

  • ■ Latour, S., Gish, G., Helgason, C.D., Humphries, R.K., Pawson, T., and Veillette, A.: Regulation of SLAM-mediated signal transduction by SAP, the X-linked lymphoproliferative gene product. Nat. Immunol. 2001, 2:681–690.

  • ■ Morra, M., Howie, D., Grande, M.S., Sayos, J., Wang, N., Wu, C., Engel, P., and Terhorst, C.: X-linked lymphoproliferative disease: a progressive immunodeficiency. Annu. Rev. Immunol. 2001, 19:657–682.

  • ■ Rigaud, S., Fondaneche, M.C., Lambert, N., Pasquier, B., Mateo, V., Soulas, P., Galicier, L., Le Deist, F., Rieux-Laucat, F., Revy, P., et al.: XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature 2006, 444:110–114.

1.2.13 Abschnitt 13.1.13

  • ■ Collin, M., Bigley, V., Haniffa, M., and Hambleton, S.: Human dendritic cell deficiency: the missing ID? Nat. Rev. Immunol. 2011, 11:575–583.

  • ■ Hambleton, S., Salem, S., Bustamante, J., Bigley, V., Boisson-Dupuis, S., Azevedo, J., Fortin, A., Haniffa, M., Ceron-Gutierrez, L., Bacon, C.M., et al.: IRF8 mutations and human dendritic-cell immunodeficiency. N. Engl. J. Med. 2011, 365:127–138.

1.2.14 Abschnitt 13.1.14

  • ■ Colten, H.R. and Rosen, F.S.: Complement deficiencies. Annu. Rev. Immunol. 1992, 10:809–834.

  • ■ Dahl, M., Tybjaerg-Hansen, A., Schnohr, P., and Nordestgaard, B.G.: A population-based study of morbidity and mortality in mannose-binding lectin deficiency. J. Exp. Med. 2004, 199:1391–1399.

  • ■ Walport, M.J.: Complement. First of two parts. N. Engl. J. Med. 2001 344:1058–1066.

  • ■ Walport, M.J.: Complement. Second of two parts. N. Engl. J. Med. 2001, 344:1140–1144.

1.2.15 Abschnitt 13.1.15

  • ■ Andrews, T. and Sullivan, K.E.: Infections in patients with inherited defects in phagocytic function. Clin. Microbiol. Rev. 2003, 16:597–621.

  • ■ Etzioni, A.: Genetic etiologies of leukocyte adhesion defects. Curr. Opin. Immunol. 2009, 21:481–486.

  • ■ Fischer, A., Lisowska Grospierre, B., Anderson, D.C., and Springer, T.A.: Leukocyte adhesion deficiency: molecular basis and functional consequences. Immunodefic. Rev. 1988, 1:39–54.

  • ■ Goldblatt, D. and Thrasher, A.J.: Chronic granulomatous disease. Clin. Exp. Immunol. 2000, 122:1–9.

  • ■ Klein, C. and Welte, K.: Genetic insights into congenital neutropenia. Clin. Rev. Allergy Immunol. 2010, 38:68–74.

  • ■ Netea, M.G., Wijmenga, C., and O’Neill, L.A.J.: Genetic variation in Toll-like receptors and disease susceptibility. Nat. Immunol. 2012, 13:535–542.

  • ■ Spritz, R.A.: Genetic defects in Chediak-Higashi syndrome and the beige mouse. J. Clin. Immunol. 1998, 18:97–105.

  • ■ Suhir, H. and Etzioni, A.: The role of Toll-like receptor signaling in human immunodeficiencies. Clin. Rev. Allergy Immunol. 2010, 38:11–19.

1.2.16 Abschnitt 13.1.16

  • ■ Delpech, M. and Grateau, G.: Genetically determined recurrent fevers. Curr. Opin. Immunol. 2001, 13:539–542.

  • ■ Dinarello, C.A.: Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 2009, 27:519–550.

  • ■ Drenth, J.P. and van der Meer, J.W.: Hereditary periodic fever. N. Engl. J. Med. 2001, 345:1748–1757.

  • ■ Kastner, D.L. and O’Shea, J.J.: A fever gene comes in from the cold. Nat. Genet. 2001, 29:241–242.

  • ■ Stehlik, C. and Reed, J.C.: The PYRIN connection: novel players in innate immunity and inflammation. J. Exp. Med. 2004, 200:551–558.

1.2.17 Abschnitt 13.1.17

  • ■ Fischer, A., Hacein-Bey, S., and Cavazzana-Calvo, M.: Gene therapy of severe combined immunodeficiencies. Nat. Rev. Immunol. 2002, 2:615–621.

  • ■ Fischer, A., Le Deist, F., Hacein-Bey-Abina, S., Andre-Schmutz, I., de Saint, B.G., de Villartay, J.P., and Cavazzana-Calvo, M.: Severe combined immunodeficiency. A model disease for molecular immunology and therapy. Immunol. Rev. 2005, 203:98–109.

  • ■ Hacein-Bey-Abina, S., Le Deist, F., Carlier, F., Bouneaud, C., Hue, C., De Villartay, J.P., Thrasher, A.J., Wulffraat, N., Sorensen, R., Dupuis-Girod, S., et al.: Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N. Engl. J. Med. 2002, 346:1185–1193.

  • ■ Hacein-Bey-Abina, S., Von Kalle, C., Schmidt, M., McCormack, M.P., Wulffraat, N., Leboulch, P., Lim, A., Osborne, C.S., Pawliuk, R., Morillon, E., et al.: LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003, 302:415–419.

  • ■ Rosen, F.S.: Successful gene therapy for severe combined immunodeficiency. N. Engl. J. Med. 2002, 346:1241–1243.

1.2.18 Abschnitt 13.1.18

  • ■ Chandra, R.K.: Nutrition, immunity and infection: from basic knowledge of dietary manipulation of immune responses to practical application of ameliorating suffering and improving survival. Proc. Natl Acad. Sci. USA 1996, 93:14304–14307.

  • ■ Lord, G.M., Matarese, G., Howard, J.K., Baker, R.J., Bloom, S.R., and Lechler, R.I.: Leptin modulates the T-cell immune response and reverses starvation-inuced immunosuppression. Nature 1998, 394:897–901.

1.2.19 Abschnitt 13.2.1

  • ■ Bhavsar, A.P., Guttman, J.A., and Finlay, B.B.: Manipulation of host-cell pathways by bacterial pathogens. Nature 2007, 449:827–834.

  • ■ Blander, J.M. and Sander, L.E.: Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nat. Rev. Immunol. 2012, 12:215–225.

  • ■ Hajishengallis, G. and Lambris, J.D.: Microbial manipulation of receptor crosstalk in innate immunity. Nat. Rev. Immunol. 2011, 11:187–200.

  • ■ Hornef, M.W., Wick, M.J., Rhen, M., and Normark, S.: Bacterial strategies for overcoming host innate and adaptive immune responses. Nat. Immunol. 2002, 3:1033–1040.

  • ■ Lambris, J.D., Ricklin, D., and Geisbrecht, B.V.: Complement evasion by human pathogens. Nat. Rev. Microbiol. 2008, 6:132–142.

  • ■ Phillips, R.E.: Immunology taught by Darwin. Nat. Immunol. 2002, 3:987–989.

  • ■ Raymond, B., Young, J.C., Pallett, M., Endres, R.G., Clements, A., and Frankel, G.: Subversion of trafficking, apoptosis, and innate immunity by type III secretion system effectors. Trends Microbiol. 2013, 21:430–441.

  • ■ Vance, R.E., Isberg, R.R., and Portnoy, D.A.: Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 2009, 6:10–21.

  • ■ Yeaman, M.R. and Yount, N.Y.: Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 2003, 55:27–55.

1.2.20 Abschnitt 13.2.2

  • ■ Cambier, C.J., Takaki, K.K., Larson, R.P., Hernandez, R.E., Tobin, D.M., Urdahl, K.B., Cosma, C.L., and Ramakrishnan, L.: Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature 2014, 505:218–222.

  • ■ Clegg, S., Hancox, L.S., and Yeh, K.S.: Salmonella typhimurium fimbrial phase variation and FimA expression. J. Bacteriol. 1996, 178:542–545.

  • ■ Cossart, P.: Host/pathogen interactions. Subversion of the mammalian cell cytoskeleton by invasive bacteria. J. Clin. Invest. 1997, 99:2307–2311.

  • ■ Young, D., Hussell, T., and Dougan, G.: Chronic bacterial infections: living with unwanted guests. Nat. Immunol. 2002, 3:1026–1032.

1.2.21 Abschnitt 13.2.3

  • ■ Donelson, J.E., Hill, K.L., and El-Sayed, N.M.: Multiple mechanisms of immune evasion by African trypanosomes. Mol. Biochem. Parasitol. 1998, 91:51–66.

  • ■ Sacks, D. and Sher, A.: Evasion of innate immunity by parasitic protozoa. Nat. Immunol. 2002, 3:1041–1047.

1.2.22 Abschnitt 13.2.4

  • ■ Bowie, A.G. and Unterholzner, L.: Viral evasion and subversion of pattern-recognition receptor signalling. Nat. Rev. Immunol. 2008, 8:911–922.

  • ■ Brander, C. and Walker, B.D.: Modulation of host immune responses by clinically relevant human DNA and RNA viruses. Curr. Opin. Microbiol. 2000, 3:379–386.

  • ■ Gibbs, M.J., Armstrong, J.S., and Gibbs, A.J.: Recombination in the hemagglutinin gene of the 1918 ‘Spanish flu.’ Science 2001, 293:1842–1845.

  • ■ Hatta, M., Gao, P., Halfmann, P., and Kawaoka, Y.: Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 2001, 293:1840–1842.

  • ■ Hilleman, M.R.: Strategies and mechanisms for host and pathogen survival in acute and persistent viral infections. Proc. Natl Acad. Sci. USA 2004, 101:14560–14566.

  • ■ Laver, G. and Garman, E.: Virology. The origin and control of pandemic influenza. Science 2001, 293:1776–1777.

1.2.23 Abschnitt 13.2.5

  • ■ Alcami, A.: Viral mimicry of cytokines, chemokines and their receptors. Nat. Rev. Immunol. 2003, 3:36–50.

  • ■ Hansen, T.H. and Bouvier, M.: MHC class I antigen presentation: learning from viral evasion strategies. Nat. Rev. Immunol. 2009, 9:503–513.

  • ■ McFadden, G. and Murphy, P.M.: Host-related immunomodulators encoded by poxviruses and herpesviruses. Curr. Opin. Microbiol. 2000, 3:371–378.

  • ■ Paludan, S.R., Bowie, A.G., Horan, K. A., and Fitzgerald, K. A.: Recognition of herpesviruses by the innate immune system. Nat. Rev. Immunol. 2011, 11:143–154.

  • ■ Yewdell, J.W. and Hill, A.B.: Viral interference with antigen presentation. Nat. Immunol. 2002, 2:1019–1025.

1.2.24 Abschnitt 13.2.6

  • ■ Cohen, J.I.: Epstein-Barr virus infection. N. Engl. J. Med. 2000, 343:481–492.

  • ■ Hahn, G., Jores, R., and Mocarski, E.S.: Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc. Natl Acad. Sci. USA 1998, 95:3937–3942.

  • ■ Ho, D.Y.: Herpes simplex virus latency: molecular aspects. Prog. Med. Virol. 1992, 39:76–115.

  • ■ Kuppers, R.: B cells under the influence: transformation of B cells by Epstein-Barr virus. Nat. Rev. Immunol. 2003, 3:801–812.

  • ■ Lauer, G.M. and Walker, B.D.: Hepatitis C virus infection. N. Engl. J. Med. 2001, 345:41–52.

  • ■ Macsween, K.F. and Crawford, D.H.: Epstein-Barr virus—recent advances. Lancet Infect. Dis. 2003, 3:131–140.

  • ■ Nash, A.A.: T cells and the regulation of herpes simplex virus latency and reactivation. J. Exp. Med. 2000, 191:1455–1458.

1.2.25 Abschnitt 13.3.1

  • ■ Baltimore, D.: The enigma of HIV infection. Cell 1995, 82:175–176.

  • ■ Barre-Sinoussi, F.: HIV as the cause of AIDS. Lancet 1996, 348:31–35.

  • ■ Campbell-Yesufu, O.T. and Gandhi, R.T.: Update on human immunodeficiency virus (HIV)-2 infection. Clin. Infect. Dis. 2011, 52:780–787.

  • ■ Heeney, J.L., Dalgleish, A.G., and Weiss, R.A.: Origins of HIV and the evolution of resistance to AIDS. Science 2006, 313:462–466.

  • ■ Sharp, P.M. and Hahn, B.H.: Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 2011, 1:a006841.

1.2.26 Abschnitt 13.3.2

  • ■ Grouard, G. and Clark, E.A.: Role of dendritic and follicular dendritic cells in HIV infection and pathogenesis. Curr. Opin. Immunol. 1997, 9:563–567.

  • ■ Moore, J.P., Trkola, A., and Dragic, T.: Co-receptors for HIV-1 entry. Curr. Opin. Immunol. 1997, 9:551–562.

  • ■ Pohlmann, S., Baribaud, F., and Doms, R.W.: DC-SIGN and DC-SIGNR: helping hands for HIV. Trends Immunol. 2001, 22:643–646.

  • ■ Root, M.J., Kay, M.S., and Kim, P.S.: Protein design of an HIV-1 entry inhibitor. Science 2001, 291:884–888.

  • ■ Sol-Foulon, N., Moris, A., Nobile, C., Boccaccio, C., Engering, A., Abastado, J.P., Heard, J.M., van Kooyk, Y., and Schwartz, O.: HIV-1 Nef-induced upregulation of DC-SIGN in dendritic cells promotes lymphocyte clustering and viral spread. Immunity 2002, 16:145–155.

  • ■ Unutmaz, D. and Littman, D.R.: Expression pattern of HIV-1 coreceptors on T cells: implications for viral transmission and lymphocyte homing. Proc. Natl Acad. Sci. USA 1997, 94:1615–1618.

  • ■ Wyatt, R. and Sodroski, J.: The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 1998, 280:1884–1888.

1.2.27 Abschnitt 13.3.3

  • ■ Chiu, Y.L., Soros, V.B., Kreisberg, J.F., Stopak, K., Yonemoto, W., and Greene, W.C.: Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature 2005, 435:108–114.

  • ■ Cullen, B.R.: HIV-1 auxiliary proteins: making connections in a dyig cell. Cell 1998, 93:685–692.

  • ■ Cullen, B.R.: Connections between the processing and nuclear export of mRNA: evidence for an export license? Proc. Natl Acad. Sci. USA 2000, 97:4–6.

  • ■ Emerman, M. and Malim, M.H.: HIV-1 regulatory/accessory genes: keys to unraveling viral and host cell biology. Science 1998, 280:1880–1884.

  • ■ Ho, Y.-C., Shan, L., Hosmane, N.N., Wang, J., Laskey, S.B., Rosenbloom, D.I.S., Lai, J., Blankson, J.N., Siliciano, J.D., and Siliciano, R.F.: Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 2013, 155:540–551.

  • ■ Kinoshita, S., Su, L., Amano, M., Timmerman, L.A., Kaneshima, H., and Nolan, G.P.: The T-cell activation factor NF-ATc positively regulates HIV-1 replication and gene expression in T cells. Immunity 1997, 6:235–244.

  • ■ Malim, M.H. and Bieniasz, P.D.: HIV restriction factors and mechanisms of evasion. Cold Spring Harb. Perspect. Med. 2012, 2:a006940.

  • ■ Trono, D.: HIV accessory proteins: leading roles for the supporting cast. Cell 1995, 82:189–192.

1.2.28 Abschnitt 13.3.4

  • ■ Bomsel, M. and David, V.: Mucosal gatekeepers: selecting HIV viruses for early infection. Nat. Med. 2002, 8:114–116.

  • ■ Kwon, D.S., Gregorio, G., Bitton, N., Hendrickson, W.A., and Littman, D.R.: DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 2002, 16:135–144.

  • ■ Pantaleo, G., Menzo, S., Vaccarezza, M., Graziosi, C., Cohen, O.J., Demarest, J.F., Montefiori, D., Orenstein, Peckham, C., and Gibb, D.: Mother-to-child transmission of the human immunodeficiency virus. N. Engl. J. Med. 1995, 333:298–302.

  • ■ Royce, R.A., Sena, A., Cates Jr., W., and Cohen, M.S.: Sexual transmission of HIV. N. Engl. J. Med. 1997, 336:1072–1078.

1.2.29 Abschnitt 13.3.5

  • ■ Berger, E.A., Murphy, P.M., and Farber, J.M.: Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu. Rev. Immunol. 1999, 17:657–700.

  • ■ Connor, R.I., Sheridan, K.E., Ceradini, D., Choe, S., and Landau, N.R.: Change in coreceptor use correlates with disease progression in HIV-1—infected individuals. J. Exp. Med. 1997, 185:621–628.

  • ■ Littman, D.R.: Chemokine receptors: keys to AIDS pathogenesis? Cell 1998, 93:677–680.

1.2.30 Abschnitt 13.3.6

  • ■ Gonzalez, E., Kulkarni, H., Bolivar, H., Mangano, A., Sanchez, R., Catano, G., Nibbs, R.J., Freedman, B.I., Quinones, M.P., Bamshad, M.J., et al.: The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 2005, 307:1434–1440.

  • ■ Liu, R., Paxton, W.A., Choe, S., Ceradini, D., Martin, S.R., Horuk, R., Macdonald, M. E., Stuhlmann, H., Koup, R.A., and Landau, N.R.: Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply exposed individuals to HIV 1 infection. Cell 1996, 86:367–377.

  • ■ Samson, M., Libert, F., Doranz, B.J., Rucker, J., Liesnard, C., Farber, C.M., Saragosti, S., Lapoumeroulie, C., Cognaux, J., Forceille, C., et al.: Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR 5 chemokine receptor gene. Nature 1996, 382:722–725.

1.2.31 Abschnitt 13.3.7

  • ■ Baltimore, D.: Lessons from people with nonprogressive HIV infection. N. Engl. J. Med. 1995, 332:259–260.

  • ■ Barouch, D.H. and Letvin, N.L.: CD8+ cytotoxic T lymphocyte responses to lentiviruses and herpesviruses. Curr. Opin. Immunol. 2001, 13:479–482.

  • ■ Haase, A.T.: Targeting early infection to prevent HIV-1 mucosal transmission. Nature 2010, 464:217–223.

  • ■ Ho, D.D., Neumann, A.U., Perelson, A.S., Chen, W., Leonard, J.M., and Markowitz, M.: Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 1995, 373:123–126.

  • ■ Liao, H.-X., Lynch, R., Zhou, T., Gao, F., Alam, S.M., Boyd, S.D., Fire, A.Z., Roskin, K.M., Schramm, C.A., Zhang, Z., et al.: Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 2013, 496:469–476.

  • ■ Johnson, W.E. and Desrosiers, R.C.: Viral persistance: HIV’s strategies of immune system evasion. Annu. Rev. Med. 2002, 53:499–518.

  • ■ McMichael, A.J., Borrow, P., Tomaras, G.D., Goonetilleke, N., and Haynes, B.F.: The immune response during acute HIV-1 infection: clues for vaccine development. Nat. Rev. Immunol. 2010, 10:11–23.

  • ■ Price, D.A., Goulder, P.J., Klenerman, P., Sewell, A.K., Easterbrook, P.J., Troop, M., Bangham, C.R., and Phillips, R.E.: Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection. Proc. Natl Acad. Sci. USA 1997, 94:1890–1895.

  • ■ Schmitz, J.E., Kuroda, M.J., Santra, S., Sasseville, V.G., Simon, M.A., Lifton, M.A., Racz, P., Tenner-Racz, K., Dalesandro, M., Scallon, B.J., et al.: Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 1999, 283:857–860.

  • ■ Siliciano, R.F. and Greene, W.C.: HIV latency. Cold Spring Harb. Perspect. Med. 2011, 1:a007096.

  • ■ Pantaleo, G., Menzo, S., Vaccarezza, M., Graziosi, C., Cohen, O.J., Demarest, JF, Montefiori, D, Orenstein, J.M., Fox, C., Schrager, L.K., et al.: Studies in subjects with long-term nonprogressive human immunodeficiency virus infection. N. Engl. J. Med. 1995, 332:209–216.

1.2.32 Abschnitt 13.3.8

  • ■ Burton, G.F., Masuda, A., Heath, S.L., Smith, B.A., Tew, J.G., and Szakal, A.K.: Follicular dendritic cells (FDC) in retroviral infection: host/pathogen perspectives. Immunol. Rev. 1997, 156:185–197.

  • ■ Chun, T.W., Carruth, L., Finzi, D., Shen, X., DiGiuseppe, J.A., Taylor, H., Hermankova, M., Chadwick, K., Margolick, J., Quinn, T.C., et al.: Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 1997, 387:183–188.

  • ■ Haase, A.T.: Population biology of HIV-1 infection: viral and CD4+ T cell demographics and dynamics in lymphatic tissues. Annu. Rev. Immunol. 1999, 17:625–656.

  • ■ Pierson, T., McArthur, J., and Siliciano, R.F.: Reservoirs for HIV-1: mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy. Annu. Rev. Immunol. 2000, 18:665–708.

1.2.33 Abschnitt 13.3.9

  • ■ Bream, J.H., Ping, A., Zhang, X., Winkler, C., and Young, H.A.: A single nucleotide polymorphism in the proximal IFN-gamma promoter alters control of gene transcription. Genes Immun. 2002, 3:165–169.

  • ■ Martin, M.P., Gao, X., Lee, J.H., Nelson, G.W., Detels, R., Goedert, J.J., Buchbinder, S., Hoots, K., Vlahov, D., Trowsdale, J., et al.: Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat. Genet. 2002, 31:429–434.

  • ■ Shin, H.D., Winkler, C., Stephens, J.C., Bream, J., Young, H., Goedert, J.J., O’Brien, T.R., Vlahov, D., Buchbinder, S., Giorgi, J., et al.: Genetic restriction of HIV-1 pathogenesis to AIDS by promoter alleles of IL10. Proc. Natl Acad. Sci. USA 2000, 97:14467–14472.

  • ■ Walker, B.D. and Yu, X.G.: Unravelling the mechanisms of durable control of HIV-1. Nat. Rev. Immunol. 2013, 13:487–498.

1.2.34 Abschnitt 13.3.10

  • ■ Kedes, D.H., Operskalski, E., Busch, M., Kohn, R., Flood, J., and Ganem, D.R.: The seroepidemiology of human herpesvirus 8 (Kaposi’s sarcoma associated herpesvirus): distribution of infection in KS risk groups and evidence for sexual transmission. Nat. Med. 1996, 2:918–924.

  • ■ Miller, R.: HIV-associated respiratory diseases. Lancet 1996, 348:307–312.

  • ■ Zhong, W.D., Wang, H., Herndier, B., and Ganem, D.R.: Restricted expression of Kaposi sarcoma associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc. Natl Acad. Sci. USA 1996, 93:6641–6646.

1.2.35 Abschnitt 13.3.11

  • ■ Allers, K., Hütter, G., Hofmann, J., Loddenkemper, C., Rieger, K., Thiel, E., and Schneider, T.: Evidence for the cure of HIV infection by CCR5∆32/∆32 stem cell transplantation. Blood 2011, 117:2791–2799.

  • ■ Barouch, D.H. and Deeks, S.G.: Immunologic strategies for HIV-1 remission and eradication. Science 2014, 345:169–174.

  • ■ Boyd, M. and Reiss, P.: The long-term consequences of antiretroviral therapy: a review. J. HIV Ther. 2006, 11:26–35.

  • ■ Cammack, N.: The potential for HIV fusion inhibition. Curr. Opin. Infect. Dis. 2001, 14:13–16.

  • ■ Carcelain, G., Debre, P., and Autran, B.: Reconstitution of CD4+ T lymphocytes in HIV-infected individuals following antiretroviral therapy. Curr. Opin. Immunol. 2001, 13:483–488.

  • ■ Farber, J.M. and Berger, E.A.: HIV’s response to a CCR5 inhibitor: I’d rather tighten than switch! Proc. Natl Acad. Sci. USA 2002, 99:1749–1751.

  • ■ Ho, D.D.: Perspectives series: host/pathogen interactions. Dynamics of HIV-1 replication in vivo. J. Clin. Invest. 1997, 99:2565–2567.

  • ■ Kordelas, L., Verheyen, J., and Esser, S.: Shift of HIV tropism in stem-cell transplantation with CCR5 Delta32 mutation. N. Engl. J. Med. 2014, 371:880–882.

  • ■ Lundgren, J.D. and Mocroft, A.: The impact of antiretroviral therapy on AIDS and survival. J. HIV Ther. 2006, 11:36–38.

  • ■ Perelson, A.S., Essunger, P., Cao, Y.Z., Vesanen, M., Hurley, A., Saksela, K., Markowitz, M., and Ho, D.D.: Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 1997, 387:188–191.

  • ■ Wei, X., Ghosh, S.K., Taylor, M. E., Johnson, V.A., Emini, E.A., Deutsch, P., Lifson, J.D., Bonhoeffer, S., Nowak, M.A., Hahn, B.H., et al.: Viral dynamics in human immunodeficiency virus type 1 infection. Nature 1995, 373:117–122.

1.2.36 Abschnitt 13.3.12

  • ■ Condra, J.H., Schleif, W.A., Blahy, O.M., Gabryelski, L.J., Graham, D.J., Quintero, J.C., Rhodes, A., Robbins, H.L., Roth, E., Shivaprakash, M., et al.: In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. Nature 1995, 374:569–571.

  • ■ Finzi, D. and Siliciano, R.F.: Viral dynamics in HIV-1 infection. Cell 1998, 93:665–671.

  • ■ Katzenstein, D.: Combination therapies for HIV infection and genomic drug resistance. Lancet 1997, 350:970–971.

  • ■ Moutouh, L., Corbeil, J., and Richman, D.D.: Recombination leads to the rapid emergence of HIV 1 dually resistant mutants under selective drug pressure. Proc. Natl Acad. Sci. USA 1996, 93:6106–6111.

1.2.37 Abschnitt 13.3.13

  • ■ Baba, T.W., Liska, V., Hofmann-Lehmann, R., Vlasak, J., Xu, W., Ayehunie, S., Cavacini, L.A., Posner, M.R., Katinger, H., Stiegler, G., et al.: Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat. Med. 2000, 6:200–206.

  • ■ Barouch, D.H.: The quest for an HIV-1 vaccine – moving forward. N. Engl. J. Med. 2013, 369:2073–2076.

  • ■ Barouch, D.H., Kunstman, J., Kuroda, M.J., Schmitz, J.E., Santra, S., Peyerl, F.W., Krivulka, G.R., Beaudry, K., Lifton, M.A., Gorgone, D.A., et al.: Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes. Nature 2002, 415:335–339.

  • ■ Isitman, G., Stratov, I., and Kent, S.J.: Antibody-dependent cellular cytotoxicity and Nk cell-driven immune escape in HIV Infection: Implications for HIV vaccine development. Adv. Virol. 2012, 212:637208.

  • ■ Letvin, N.L.: Progress and obstacles in the development of an AIDS vaccine. Nat. Rev. Immunol. 2006, 6:930–939.

  • ■ McMichael, A.J. and Koff, W.C.: Vaccines that stimulate T cell immunity to HIV-1: the next step. Nat. Immunol. 2014, 15:319–322.

1.2.38 Abschnitt 13.3.14

  • ■ Coates, T.J., Aggleton, P., Gutzwiller, F., Des-Jarlais, D., Kihara, M., Kippax, S., Schechter, M., and van-den-Hoek, J.A.: HIV prevention in developed countries. Lancet 1996, 348:1143–1148.

  • ■ Decosas, J., Kane, F., Anarfi, J.K., Sodji, K.D., and Wagner, H.U.: Migration and AIDS. Lancet 1995, 346:826–828.

  • ■ Dowsett, G.W.: Sustaining safe sex: sexual practices, HIV and social context. AIDS 1993, 7 Suppl. 1:S257–S262.

  • ■ Kirby, M.: Human rights and the HIV paradox. Lancet 1996, 348:1217–1218.

  • ■ Nelson, K.E., Celentano, D.D., Eiumtrakol, S., Hoover, D.R., Beyrer, C., Suprasert, S., Kuntolbutra, S., and Khamboonruang, C.: Changes in sexual behavior and a decline in HIV infection among young men in Thailand. N. Engl. J. Med. 1996, 335:297–303.

  • ■ Weniger, B.G. and Brown, T.: The march of AIDS through Asia. N. Engl. J. Med. 1996, 335:343–345.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murphy, K., Weaver, C. (2018). Das Versagen der Immunantwort. In: Janeway Immunologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56004-4_13

Download citation

Publish with us

Policies and ethics