Skip to main content

Die humorale Immunantwort

  • Chapter
  • First Online:
Janeway Immunologie

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Murphy .

Appendices

Aufgaben

1 10.1 Multiple Choice

Welche der folgenden Wirkungen ist keine Effektorfunktion von Antikörpern?

  1. A.

    Opsonisierung

  2. B.

    Neutralisierung

  3. C.

    Komplementaktivierung

  4. D.

    gekoppelte Erkennung

  5. E.

    Degranulierung der Mastzellen

1 10.2 Kurze Antwort

Der Impfstoff gegen Haemophilus influenzae Typ b (Hib) bestand ursprünglich nur aus der Polysaccharidkapsel des Mikroorganismus. Damit war es jedoch nicht möglich, wirksame Antikörperreaktionen auszulösen. Wenn man das Hib-Polysaccharid direkt mit dem Tetanus- oder Diphtherietoxoid verknüpft, kommt es zu sehr wirksamen Antikörperreaktionen gegen Hib; der zurzeit verwendete Impfstoff ist so aufgebaut. Welcher immunologische Effekt wird genutzt, wenn man aus der Hib-Kapsel stammende Polysaccharide mit einem Toxoid koppelt, und wie entsteht dadurch eine wirksame Antikörperreaktion?

1 10.3 Bitte zuordnen

Bei T-abhängigen Antikörperreaktionen kommt es zu zahlreichen Wechselwirkungen zwischen Rezeptoren und Liganden sowie zu Cytokinsignalen zwischen TFH-Zellen und aktivierten B-Zellen. Welcher der folgenden Oberflächenrezeptoren und Liganden wird von T-Zellen (T), B-Zellen (B), beiden Zelltypen (TB) oder keinem der beiden (N) produziert?

  1. A.

    IL-21

  2. B.

    ICOSL

  3. C.

    CD40L

  4. D.

    CD30L

  5. E.

    Peptid:MHC II

  6. F.

    CCL21

  7. G.

    SLAM

1 10.4 Bitte zuordnen

Welche der folgenden Krankheiten des Menschen hängt mit welchem Gendefekt zusammen?

A.

X-gekoppeltes lymphoproliferatives Syndrom

i.

Transläsions-DNA-Polymerase Polη

B.

Hyper-IgM-Immunschwäche Typ 2

ii.

ATM (eine Kinase der DNA-PKcs-Familie)

C.

Xeroderma pigmentosum

iii.

SLAM-assoziiertes Protein (SAP)

D.

Ataxia teleangiectatica

iv.

aktivierungsinduzierte Cytidin-Desaminase

1 10.5 Bitte zuordnen

Welche der folgenden Eigenschaften treffen auf IgA, IgD, IgE, IgG und/oder IgM zu?

  1. A.

    wird bei der humoralen Immunantwort als Erstes produziert

  2. B.

    Monomere (vorherrschende Form)

  3. C.

    Dimere (vorherrschende Form)

  4. D.

    Pentamere (vorherrschende Form)

  5. E.

    enthält eine J-Kette

  6. F.

    kann Komplementanlagerung auslösen

  7. G.

    häufigste Form an mucosalen Oberflächen und in Sekreten

  8. H.

    geringe Affinität

  9. I.

    an Mastzellen gebunden

  10. J.

    bindet an den Immunglobulinpolymerrezeptor (pIgR)

  11. K.

    bindet an den neonatalen Fc-Rezeptor

1 10.6 Kurze Antwort

Wie unterscheidet sich TRIM21, eine neu entdeckte Art von Fc-Rezeptoren, von anderen Fc-Rezeptoren?

1 10.7 Multiple Choice

Welche der folgenden Funktionen wird durch die Bindung von Antikörpern an Fcγ-Rezeptoren nicht ausgelöst?

  1. A.

    antikörperabhängige zellvermittelte Cytotoxizität (ADCC) über NK-Zellen

  2. B.

    Phagocytose durch neutrophile Zellen

  3. C.

    Degranulierung von Mastzellen

  4. D.

    Herunterregulieren der B-Zell-Aktivität

  5. E.

    Aufnahme von Immunkomplexen durch dendritische Zellen

1 10.8 Multiple Choice

Welche der folgenden Aussagen ist falsch?

  1. A.

    Das Überleben der naiven B-Zellen in den Follikeln hängt von BAFF ab, der Signale über BAFF-R, TACI und BCMA übermittelt und so die Expression von Bcl-2 auslöst.

  2. B.

    Der subkapsuläre Sinus der Lymphknoten und der Randsinus der Milz sind in der Funktion ähnliche Regionen, die mit spezialisierten Makrophagen angefüllt sind, die Antigene festhalten, aber nicht in sich aufnehmen.

  3. C.

    ICOS-Signale in T-Zellen sind für die vollständige Differenzierung von TFH-Zellen und die Expression der Transkriptionsfaktoren Bcl-6 und c-Maf essenziell.

  4. D.

    Sowohl Plasmablasten als auch Plasmazellen exprimieren costimulierende B7-Moleküle, MHC-Klasse-II-Moleküle und große Mengen an B-Zell-Rezeptoren.

  5. E.

    TFH-Zellen bestimmen beim Klassenwechsel in T-abhängigen Antikörperreaktionen die Auswahl des Isotyps.

1 10.9 Richtig oder falsch

Die Keimzentren enthalten eine helle und eine dunkle Zone. In der hellen Zone findet eine starke Proliferation der B-Zellen statt, die man als Centroblasten bezeichnet. Sie werden dort durch CXCL12-CXCR4-Chemokinsignale festgehalten und durchlaufen die somatische Hypermutation. Diese führt zur Affinitätsreifung und zum Isotypwechsel. In der dunklen Zone beenden die B-Zellen die Proliferation und man bezeichnet sie als Centrocyten. Hier werden sie von CXCL13-CXCR5-Chemokinsignalen festgehalten, exprimieren größere Mengen des B-Zell-Rezeptors und interagieren intensiv mit TFH-Zellen.

1 10.10 Multiple Choice

Welche Aussage trifft zu?

  1. A.

    R-Schleifen sind Strukturen, die bei der somatischen Hypermutation entstehen; sie fördern die Zugänglichkeit der V-Regionen der Immunglobuline für AID.

  2. B.

    APE1 entfernt ein desaminiertes Cytosin, wodurch eine abasische Stelle entsteht, sodass bei der nächsten Runde der DNA-Replikation an dieser Stelle eine beliebige Base eingebaut werden kann.

  3. C.

    Während einer Klassenwechselrekombination kann es zu keinen Mutationen mit Rasterverschiebung kommen, da die Switch-Regionen in Introns liegen.

  4. D.

    Die fehleranfällige MSH2/6-Polymerase repariert DNA-Schäden und verursacht Mutationen, die die somatische Hypermutation unterstützen.

1 10.11 Bitte ergänzen

Fc-Rezeptoren diversifizieren die Effektorfunktionen der jeweiligen Antikörperisotypen. Die meisten Fc-Rezeptoren können die Fc-Regionen von Antikörpern mit _______ Affinität binden. Im Gegensatz dazu bindet FcεRI mit _______ Affinität. Durch multivalente Antigene gebundene IgE-Antikörper können an _______ in Mastzellen binden und führen zur Freisetzung von Lipidmediatoren wie _______ und _______. Mastzellen degranulieren auch als Reaktion auf eine Quervernetzung der an Fc-Rezeptoren gebundenen IgE-Moleküle, wodurch es zur Freisetzung von _______ kommt. In der Folge nehmen der lokale Blutfluss und _______ zu, sodass eine Entzündungsreaktion in Gang gesetzt wird.

Literatur

1.1 Allgemeine Literatur

  • ■ Batista, F.D. and Harwood, N.E.: The who, how and where of antigen presentation to B cells. Nat. Rev. Immunol. 2009, 9:15–27.

  • ■ Nimmerjahn, F. and Ravetch, J.V.: Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 2008, 8:34–47.

  • ■ Rajewsky, K.: Clonal selection and learning in the antibody system. Nature 1996, 381:751–758.

1.2 Literatur zu den einzelnen Abschnitten

1.2.1 Abschnitt 10.1.1

  • ■ Crotty, S.: T follicular helper cell differentiation, function, and roles in disease. Immunity 2014, 41:529–542.

  • ■ Maglione, P.J., Simchoni, N., Black, S., Radigan, L., Overbey, J.R., Bagiella, E., Bussel, J.B., Bossuyt, X., Casanova, J.L., Meyts, I., et al.: IRAK-4- and MyD88 deficiencies impair IgM responses against T-independent bacterial antigens. Blood 2014, 124:3561–3571.

  • ■ Pasare, C. and Medzhitov, R.: Control of B-cell responses by Toll-like receptors. Nature 2005, 438:364–368.

  • ■ Vijayanand, P., Seumois, G., Simpson, L.J., Abdul-Wajid, S., Baumjohann, D., Panduro, M., Huang, X., Interlandi, J., Djuretic, I.M., Brown, D.R., et al.: Interleukin-4 production by follicular helper T cells requires the conserved Il4 enhancer hypersensitivity site V. Immunity 2012, 36:175–187.

1.2.2 Abschnitt 10.1.2

  • ■ Barrington, R.A., Zhang, M., Zhong, X., Jonsson, H., Holodick, N., Cherukuri, A., Pierce, S.K., Rothstein, T.L., and Carroll, M.C.: CD21/CD19 coreceptor signaling promotes B cell survival during primary immune responses. J. Immunol. 2005, 175:2859–2867.

  • ■ Eskola, J., Peltola, H., Takala, A.K., Kayhty, H., Hakulinen, M., Karanko, V., Kela, E., Rekola, P., Ronnberg, P.R., Samuelson, J.S., et al.: Efficacy of Haemophilus influenzae type b polysaccharide-diphtheria toxoid conjugate vaccine in infancy. N. Engl. J. Med. 1987, 317:717–722.

  • ■ Kalled, S.L.: Impact of the BAFF/BR3 axis on B cell survival, germinal center maintenance and antibody production. Semin. Immunol. 2006, 18:290–296.

  • ■ Mackay, F. and Browning, J.L.: BAFF: a fundamental survival factor for B cells. Nat. Rev. Immunol. 2002, 2:465–475.

  • ■ Mackay, F. and Schneider, P.: Cracking the BAFF code. Nat. Rev. Immunol. 2009, 9:491–502.

  • ■ MacLennan, I.C.M., Gulbranson-Judge, A., Toellner, K.M., Casamayor-Palleja, M., Chan, E., Sze, D.M.Y., Luther, S.A., and Orbea, H.A.: The changing preference of T and B cells for partners as T-dependent antibody responses develop. Immunol. Rev. 1997, 156:53–66.

  • ■ McHeyzer-Williams, L.J., Malherbe, L.P., and McHeyzer-Williams, M.G.: Helper T cell-regulated B cell immunity. Curr. Top. Microbiol. Immunol. 2006, 311:59–83.

  • ■ Nitschke, L.: The role of CD22 and other inhibitory co-receptors in B-cell activation. Curr. Opin. Immunol. 2005, 17:290–297.

  • ■ Rickert, R.C.: Regulation of B lymphocyte activation by complement C3 and the B cell coreceptor complex. Curr. Opin. Immunol. 2005, 17:237–243.

  • ■ Teichmann, L.L., Kashgarian, M., Weaver, C.T., Roers, A., Müller, W., and Shlomchik, M.J.: B cell-derived IL-10 does not regulate spontaneous systemic autoimmunity in MRL.Fas(lpr) mice. J. Immunol. 2012, 188:678–685.

1.2.3 Abschnitt 10.1.3

  • ■ Cinamon, G., Zachariah, M.A., Lam, O.M., Foss Jr., F.W., and Cyster, J.G.: Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat. Immunol. 2008, 9:54–62.

  • ■ Fang, Y., Xu, C., Fu, Y.X., Holers, V.M., and Molina, H.: Expression of complement receptors 1 and 2 on follicular dendritic cells is necessary for the generation of a strong antigen-specific IgG response. J. Immunol. 1998, 160:5273–5279.

  • ■ Okada, T. and Cyster, J.G.: B cell migration and interactions in the early phase of antibody responses. Curr. Opin. Immunol. 2006, 18:278–285.

  • ■ Phan, T.G., Gray, E.E., and Cyster, J.G.: The microanatomy of B cell activation. Curr. Opin. Immunol. 2009, 21:258–265.

1.2.4 Abschnitt 10.1.4

  • ■ Choi, Y.S., Kageyama, R., Eto, D., Escobar, T.C., Johnston, R.J., Monticelli, L., Lao, C., and Crotty, S.: ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 2011, 34:932–946.

  • ■ Gaspal, F.M., Kim, M.Y., McConnell, F.M., Raykundalia, C., Bekiaris, V., and Lane, P.J.: Mice deficient in OX40 and CD30 signals lack memory antibody responses because of deficient CD4 T cell memory. J. Immunol. 2005, 174:3891–3896.

  • ■ Iannacone, M., Moseman, E.A., Tonti, E., Bosurgi, L., Junt, T., Henrickson, S.E., Whelan, S.P., Guidotti, L.G., and von Andrian, U.H.: Subcapsular sinus macrophages prevent CNS invasion on peripheral infection with a neurotropic virus. Nature 2010, 465:1079–1083.

  • ■ Yoshinaga, S.K., Whoriskey, J.S., Khare, S.D., Sarmiento, U., Guo, J., Horan, T., Shih, G., Zhang, M., Coccia, M.A., Kohno, T., et al.: T-cell co-stimulation through B7RP-1 and ICOS. Nature 1999, 402:827–832.

1.2.5 Abschnitt 10.1.5

  • ■ Moser, K., Tokoyoda, K., Radbruch, A., MacLennan, I., and Manz, R.A.: Stromal niches, plasma cell differentiation and survival. Curr. Opin. Immunol. 2006, 18:265–270.

  • ■ Pelletier, N., McHeyzer-Williams, L.J., Wong, K. A., Urich, E., Fazilleau, N., and McHeyzer-Williams, M.G.: Plasma cells negatively regulate the follicular helper T cell program. Nat. Immunol. 2010, 11:1110–1118.

  • ■ Radbruch, A., Muehlinghaus, G., Luger, E.O., Inamine, A., Smith, K.G., Dorner, T., and Hiepe, F.: Competence and competition: the challenge of becoming a long-lived plasma cell. Nat. Rev. Immunol. 2006, 6:741–750.

  • ■ Sciammas, R. and Davis, M.M.: Blimp-1; immunoglobulin secretion and the switch to plasma cells. Curr. Top. Microbiol. Immunol. 2005, 290:201–224.

  • ■ Shapiro-Shelef., M. and Calame, K.: Regulation of plasma-cell development. Nat. Rev. Immunol. 2005, 5:230–242.

1.2.6 Abschnitt 10.1.6

  • ■ Allen, C.D., Okada, T., and Cyster, J.G.: Germinal-center organization and cellular dynamics. Immunity 2007, 27:190–202.

  • ■ Cozine, C.L., Wolniak, K.L., and Waldschmidt, T.J.: The primary germinal center response in mice. Curr. Opin. Immunol. 2005, 17:298–302.

  • ■ Kunkel, E.J. and Butcher, E.C.: Plasma-cell homing. Nat. Rev. Immunol. 2003, 3:822–829.

  • ■ Victora, G.D., Schwickert, T.A., Fooksman, D.R., Kamphorst, A.O., Meyer-Hermann, M., Dustin, M.L., and Nussenzweig, M.C.: Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 2010, 143:592–605.

1.2.7 Abschnitt 10.1.7

  • ■ Anderson, S.M., Khalil, A., Uduman, M., Hershberg, U., Louzoun, Y., Haberman, A.M., Kleinstein, S.H., and Shlomchik, M.J.: Taking advantage: high-affinity B cells in the germinal center have lower death rates, but similar rates of division, compared to low-affinity cells. J. Immunol. 2009, 183:7314–7325.

  • ■ Gitlin, A.D., Shulman, Z., and Nussenzweig, M.C.: Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature 2014, 509:637–640.

  • ■ Jacob, J., Kelsoe, G., Rajewsky, K., and Weiss, U.: Intraclonal generation of antibody mutants in germinal centres. Nature 1991, 354:389–392.

  • ■ Li, Z., Woo, C.J., Iglesias-Ussel, M.D., Ronai, D., and Scharff, M.D.: The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev. 2004, 18:1–11.

  • ■ Wang, Z., Karras, J.G., Howard, R.G., and Rothstein, T.L.: Induction of bcl-x by CD40 engagement rescues sIg-induced apoptosis in murine B cells. J. Immunol. 1995, 155:3722–3725.

1.2.8 Abschnitt 10.1.8

  • ■ Bannard, O., Horton, R.M., Allen, C.D., An, J., Nagasawa, T., and Cyster, J.G.: Germinal center centroblasts transition to a centrocyte phenotype according to a timed program and depend on the dark zone for effective selection. Immunity 2013, 39:912–924.

  • ■ Cannons, J.L., Qi, H., Lu, K.T., Dutta, M., Gomez-Rodriguez, J., Cheng, J., Wakeland, E.K., Germain, R.N., and Schwartzberg, P.L.: Optimal germinal center responses require a multistage T cell:B cell adhesion process involving integrins, SLAM-associated protein, and CD84. Immunity 2010, 32:253–265.

  • ■ Hauser, A.E., Junt, T., Mempel, T.R., Sneddon, M.W., Kleinstein, S.H., Henrickson, S.E., von Andrian, U.H., Shlomchik, M.J., and Haberman, A.M.: Definition of germinal-center B cell migration in vivo reveals predominant intrazonal circulation patterns. Immunity 2007, 26:655–667.

  • ■ Jumper, M., Splawski, J., Lipsky, P., and Meek, K.: Ligation of CD40 induces sterile transcripts of multiple Ig H chain isotypes in human B cells. J. Immunol. 1994, 152:438–445.

  • ■ Litinskiy, M.B., Nardelli, B., Hilbert, D.M., He, B., Schaffer, A., Casali, P., and Cerutti, A.: DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat. Immunol. 2002, 3:822–829.

  • ■ Shulman, Z., Gitlin, A.D., Weinstein, J.S., Lainez, B., Esplugues, E., Flavell, R.A., Craft, J.E., and Nussenzweig, M.C.: Dynamic signaling by T follicular helper cells during germinal center B cell selection. Science 2014, 345:1058–1062.

1.2.9 Abschnitt 10.1.9

  • ■ Bransteitter, R., Pham, P., Scharff, M.D., and Goodman, M.F.: Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl Acad. Sci. USA 2003, 100:4102–4107.

  • ■ Muramatsu, M., Kinoshita, K., Fagarasan, S., Yamada, S., Shinkai, Y., and Honjo, T.: Class switch recombination and hypermutation require activation-in- duced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000, 102:553–563.

  • ■ Petersen-Mahrt, S.K., Harris, R.S., and Neuberger, M.S.: AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 2002, 418:99–103.

  • ■ Pham, P., Bransteitter, R., Petruska, J., and Goodman, M.F.: Processive AID-catalyzed cytosine deamination on single-stranded DNA stimulates somatic hypermutation. Nature 2003, 424:103–107.

  • ■ Yu, K., Huang, F.T., and Lieber, M.R.: DNA substrate length and surrounding sequence affect the activation-induced deaminase activity at cytidine. J. Biol. Chem. 2004, 279:6496–6500.

1.2.10 Abschnitt 10.1.10

  • ■ Basu, U., Chaudhuri, J., Alpert, C., Dutt, S., Ranganath, S., Li, G., Schrum, J.P., Manis, J.P., and Alt, F.W.: The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature 2005, 438:508–511.

  • ■ Chaudhuri, J., Khuong, C., and Alt, F.W.: Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 2004, 430:992–998.

  • ■ Di Noia, J.M. and Neuberger, M.S.: Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 2007, 76:1–22.

  • ■ Odegard, V. H., and Schatz, D.G.: Targeting of somatic hypermutation. Nat. Rev. Immunol. 2006, 6:573–583.

  • ■ Weigert, M.G., Cesari, I.M., Yonkovich, S.J., and Cohn, M.: Variability in the lambda light chain sequences of mouse antibody. Nature 1970, 228:1045–1047.

1.2.11 Abschnitt 10.1.11

  • ■ Basu, U., Meng, F.L., Keim, C., Grinstein, V., Pefanis, E., Eccleston, J., Zhang, T., Myers, D., Wasserman, C.R., Wesemann, D.R., et al.: The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell 2011, 144:353–363.

  • ■ Chaudhuri, J. and Alt, F.W.: Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat. Rev. Immunol. 2004, 4:541–552.

  • ■ Pavri, R., Gazumyan, A., Jankovic, M., Di Virgilio, M., Klein, I., Ansarah-Sobrinho, C., Resch, W., Yamane, A., Reina San-Martin, B., Barreto, V., et al.: Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell 2010, 143:122–133.

  • ■ Revy, P., Muto, T., Levy, Y., Geissmann, F., Plebani, A., Sanal, O., Catalan, N., Forveille, M., Dufourcq-Lagelouse, R., Gennery, A., et al.: Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 2000, 102:565–575.

1.2.12 Abschnitt 10.1.12

  • ■ Avery, D.T., Bryant, V.L., Ma, C.S., de Waal Malefyt, R., and Tangye, S.G.: IL-21-induced isotype switching to IgG and IgA by human naive B cells is differentially regulated by IL-4. J. Immunol. 2008, 181:1767–1779.

  • ■ Francke, U. and Ochs, H.D.: The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell 1993, 72:291–300.

  • ■ Park, S.R., Seo, G.Y., Choi, A.J., Stavnezer, J., and Kim, P.H.: Analysis of transforming growth factor-beta1-induced Ig germ-line gamma2b transcription and its implication for IgA isotype switching. Eur. J. Immunol. 2005, 35:946–956.

  • ■ Ray, J.P., Marshall, H.D., Laidlaw, B.J., Staron, M.M., Kaech, S.M., and Craft, J.: Transcription factor STAT3 and type I interferons are corepressive insulators for differentiation of follicular helper and T helper 1 cells. Immunity 2014, 40:367–377.

  • ■ Seo, G.Y., Park, S.R., and Kim, P.H.: Analyses of TGF-beta1-inducible Ig germline gamma2b promoter activity: involvement of Smads and NF-kappaB. Eur. J. Immunol. 2009, 39:1157–1166.

  • ■ Stavnezer, J.: Immunoglobulin class switching. Curr. Opin. Immunol. 1996, 8:199–205.

  • ■ Vijayanand, P., Seumois, G., Simpson, L.J., Abdul-Wajid, S., Baumjohann, D., Panduro, M., Huang, X., Interlandi, J., Djuretic, I.M., Brown, D.R., et al.: Interleukin-4 production by follicular helper T cells requires the conserved Il4 enhancer hypersensitivity site V. Immunity 2012, 36:175–187.

1.2.13 Abschnitt 10.1.13

  • ■ Hu, C.C., Dougan, S.K., McGehee, A.M., Love, J.C., and Ploegh, H.L.: XBP-1 regulates signal transduction, transcription factors and bone marrow colonization in B cells. EMBO J. 2009, 28:1624–1636.

  • ■ Nera, K.P. and Lassila, O.: Pax5—a critical inhibitor of plasma cell fate. Scand. J. Immunol. 2006, 64:190–199.

  • ■ Omori, S.A., Cato, M.H., Anzelon-Mills, A., Puri, K.D., Shapiro-Shelef, M., Calame, K., and Rickert, R.C.: Regulation of class-switch recombination and plasma cell differentiation by phosphatidylinositol 3-kinase signaling. Immunity 2006, 25:545–557.

  • ■ Radbruch, A., Muehlinghaus, G., Luger, E.O., Inamine, A., Smith, K.G., Dorner, T., and Hiepe, F.: Competence and competition: the challenge of becoming a longlived plasma cell. Nat. Rev. Immunol. 2006, 6:741–750.

  • ■ Schebesta, M., Heavey, B., and Busslinger, M.: Transcriptional control of B-cell development. Curr. Opin. Immunol. 2002, 14:216–223.

1.2.14 Abschnitt 10.1.14

  • ■ Anderson, J., Coutinho, A., Lernhardt, W., and Melchers, F.: Clonal growth and maturation to immunoglobulin secretion in vitro of every growth-inducible B lymphocyte. Cell 1977, 10:27–34.

  • ■ Balazs, M., Martin, F., Zhou, T., and Kearney, J.: Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity 2002, 17:341–352.

  • ■ Bekeredjian-Ding, I. and Jego, G.: Toll-like receptors—sentries in the B-cell response. Immunology 2009, 128:311–323.

  • ■ Craxton, A., Magaletti, D., Ryan, E.J., and Clark, E.A.: Macrophage- and dendritic cell-dependent regulation of human B-cell proliferation requires the TNF family ligand BAFF. Blood 2003, 101:4464–4471.

  • ■ Fagarasan, S. and Honjo, T.: T-independent immune response: new aspects of B cell biology. Science 2000, 290:89–92.

  • ■ Garcia De Vinuesa, C., Gulbranson-Judge, A., Khan, M., O’Leary, P., Cascalho, M., Wabl, M., Klaus, G.G., Owen, M.J., and MacLennan, I.C.: Dendritic cells associated with plasmablast survival. Eur. J. Immunol. 1999, 29:3712–3721.

  • ■ MacLennan, I. and Vinuesa, C.: Dendritic cells, BAFF, and APRIL: innate players in adaptive antibody responses. Immunity 2002, 17:341–352.

  • ■ Mond, J.J., Lees, A., and Snapper, C.M.: T cell-independent antigens type 2. Annu. Rev. Immunol. 1995, 13:655–692.

  • ■ Ruprecht, C.R. and Lanzavecchia, A.: Toll-like receptor stimulation as a third signal required for activation of human naive B cells. Eur. J. Immunol. 2006, 36:810–816.

  • ■ Snapper, C.M., Shen, Y., Khan, A.Q., Colino, J., Zelazowski, P., Mond, J.J., Gause, W.C., and Wu, Z.Q.: Distinct types of T-cell help for the induction of a humoral immune response to Streptococcus pneumoniae. Trends Immunol. 2001, 22:308–311.

  • ■ Yanaba, K., Bouaziz, J.D., Matsushita, T., Tsubata, T., and Tedder, T.F.: The development and function of regulatory B cells expressing IL-10 (B10 cells) requires antigen receptor diversity and TLR signals. J. Immunol. 2009, 182:7459–7472.

  • ■ Yoshizaki, A., Miyagaki, T., DiLillo, D.J., Matsushita, T., Horikawa, M., Kountikov, E.I., Spolski, R., Poe, J.C., Leonard, W.J., and Tedder, T.F.: Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature 2012, 491:264–268.

1.2.15 Abschnitt 10.2.1

  • ■ Diebolder, C.A., Beurskens, F.J., de Jong, R.N., Koning, R.I., Strumane, K., Lindorfer, M.A., Voorhorst, M., Ugurlar, D., Rosati, S., Heck, A.J., et al.: Complement is activated by IgG hexamers assembled at the cell surface. Science 2014, 343:1260–1263.

  • ■ Hughey, C.T., Brewer, J.W., Colosia, A.D., Rosse, W.F., and Corley, R.B.: Production of IgM hexamers by normal and autoimmune B cells: implications for the physiologic role of hexameric IgM. J. Immunol. 1998, 161:4091–4097.

  • ■ PetruÅ¡ic, V., Živkovic, I., Stojanovic, M., Stojicevic, I., Marinkovic, E., and Dimitrijevic, L.: Hexameric immunoglobulin M in humans: desired or unwanted? Med. Hypotheses 2011, 77:959–961.

  • ■ Rispens, T., den Bleker, T.H., and Aalberse, R.C.: Hybrid IgG4/IgG4 Fc antibodies form upon ‘Fab-arm’ exchange as demonstrated by SDS-PAGE or size-exclusion chromatography. Mol. Immunol. 2010, 47:1592–1594.

  • ■ Suzuki, K., Meek, B., Doi, Y., Muramatsu, M., Chiba, T., Honjo, T., and Fagarasan, S.: Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc. Natl Acad. Sci. USA 2004, 101:1981–1986.

  • ■ Ward, E.S. and Ghetie, V.: The effector functions of immunoglobulins: implications for therapy. Ther. Immunol. 1995, 2:77–94.

1.2.16 Abschnitt 10.2.2

  • ■ Ghetie, V. and Ward, E.S.: Multiple roles for the major histocompatibility complex class I-related receptor FcRn. Annu. Rev. Immunol. 2000, 18:739–766.

  • ■ Johansen, F.E. and Kaetzel, C.S.: Regulation of the polymeric immunoglobulin receptor and IgA transport: new advances in environmental factors that stimulate pIgR expression and its role in mucosal immunity. Mucosal Immunol. 2011, 4:598–602.

  • ■ Lamm, M. E.: Current concepts in mucosal immunity. IV. How epithelial transport of IgA antibodies relates to host defense. Am. J. Physiol. 1998, 274:G614–G617.

  • ■ Mostov, K.E.: Transepithelial transport of immunoglobulins. Annu. Rev. Immunol. 1994, 12:63–84.

1.2.17 Abschnitt 10.2.3

  • ■ Akilesh, S., Huber, T.B., Wu, H., Wang, G., Hartleben, B., Kopp, J.B., Miner, J.H., Roopenian, D.C., Unanue, E.R., and Shaw, A.S.: Podocytes use FcRn to clear IgG from the glomerular basement membrane. Proc. Natl Acad. Sci. USA 2008, 105:967–972.

  • ■ Burmeister, W.P., Gastinel, L.N., Simister, N.E., Blum, M.L., and Bjorkman, P.J.: Crystal structure at 2.2 Å resolution of the MHC-related neonatal Fc receptor. Nature 1994, 372:336–343.

  • ■ Roopenian, D.C. and Akilesh, S.: FcRn: the neonatal Fc receptor comes of age. Nat. Rev. Immunol. 2007, 7:715–725.

1.2.18 Abschnitt 10.2.4

  • ■ Brandtzaeg, P.: Role of secretory antibodies in the defence against infections. Int. J. Med. Microbiol. 2003, 293:3–15.

  • ■ Haghi, F., Peerayeh, S.N., Siadat, S.D., and Zeighami, H.: Recombinant outer membrane secretin PilQ(406–770) as a vaccine candidate for serogroup B Neisseria meningitidis. Vaccine 2012, 30:1710–1714.

  • ■ Kaufmann, B., Chipman, P.R., Holdaway, H.A., Johnson, S., Fremont, D.H., Kuhn, R.J., Diamond, M.S., and Rossmann, M.G.: Capturing a flavivirus pre-fusion intermediate. PLoS Pathog. 2009, 5:e1000672.

  • ■ Nybakken, G.E., Oliphant, T., Johnson, S., Burke, S., Diamond, M.S., and Fremont, D.H.: Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature 2005, 437:764–769.

  • ■ Sougioultzis, S., Kyne, L., Drudy, D., Keates, S., Maroo, S., Pothoulakis, C., Giannasca, P.J., Lee, C.K., Warny, M., Monath, T.P., et al.: Clostridium difficile toxoid vaccine in recurrent C. difficile-associated diarrhea. Gastroenterology 2005, 128:764–770.

1.2.19 Abschnitt 10.2.5

  • ■ Cooper, N.R.: The classical complement pathway. Activation and regulation of the first complement component. Adv. Immunol. 1985, 37:151–216.

  • ■ Perkins, S.J. and Nealis, A.S.: The quaternary structure in solution of human complement subcomponent C1r2C1s2. Biochem. J. 1989, 263:463–469.

  • ■ Sörman, A., Zhang, L., Ding, Z., and Heyman, B.: How antibodies use complement to regulate antibody responses. Mol. Immunol. 2014, 61:79–88

1.2.20 Abschnitt 10.2.6

  • ■ Dong, C., Ptacek, T.S., Redden, D.T., Zhang, K., Brown, E.E., Edberg, J.C., McGwin Jr., G., Alarcón, G.S., Ramsey-Goldman, R., Reveille, J.D., et al.: Fcγ receptor IIIa single-nucleotide polymorphisms and haplotypes affect human IgG binding and are associated with lupus nephritis in African Americans. Arthritis Rheumatol. 2014, 66:1291–1299.

  • ■ Leffler, J., Bengtsson, A.A., and Blom, A.M.: The complement system in systemic lupus erythematosus: an update. Ann. Rheum. Dis. 2014, 73:1601–1606.

  • ■ Nash, J.T., Taylor, P.R., Botto, M., Norsworthy, P.J., Davies, K. A., and Walport, M.J.: Immune complex processing in C1q-deficient mice. Clin. Exp. Immunol. 2001, 123:196–202.

  • ■ Walport, M.J., Davies, K. A., and Botto, M.: C1q and systemic lupus erythematosus. Immunobiology 1998, 199:265–285.

1.2.21 Abschnitt 10.3.1

  • ■ Kinet, J.P. and Launay, P.: Fcα/μR: single member or first born in the family? Nat. Immunol. 2000, 1:371–372.

  • ■ Mallery, D.L., McEwan, W.A., Bidgood, S.R., Towers, G.J., Johnson, C.M., and James, L.C.: Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). Proc. Natl Acad. Sci. USA 2010, 107:19985–19990.

  • ■ Ravetch, J.V. and Bolland, S.: IgG Fc receptors. Annu. Rev. Immunol. 2001, 19:275–290.

  • ■ Ravetch, J.V. and Clynes, R.A.: Divergent roles for Fc receptors and complement in vivo. Annu. Rev. Immunol. 1998, 16:421–432.

  • ■ Shibuya, A., Sakamoto, N., Shimizu, Y., Shibuya, K., Osawa, M., Hiroyama, T., Eyre, H.J., Sutherland, G.R., Endo, Y., Fujita, T., et al.: Fcα/μ receptor mediates endocytosis of IgM-coated microbes. Nat. Immunol. 2000, 1:441–446.

  • ■ Stefanescu, R.N., Olferiev M., Liu, Y., and Pricop, L.: Inhibitory Fc gamma receptors: from gene to disease. J. Clin. Immunol. 2004, 24:315–326.

1.2.22 Abschnitt 10.3.2

  • ■ Dierks, S.E., Bartlett, W.C., Edmeades, R.L., Gould, H.J., Rao, M., and Conrad, D.H.: The oligomeric nature of the murine Fc epsilon RII/CD23. Implications for function. J. Immunol. 1993, 150:2372–2382.

  • ■ Hogan, S.P., Rosenberg, H.F., Moqbel, R., Phipps, S., Foster, P.S., Lacy, P., Kay, A.B., and Rothenberg, M. E.: Eosinophils: biological properties and role in health and disease. Clin. Exp. Allergy 2008, 38:709–750.

  • ■ Karakawa, W.W., Sutton, A., Schneerson, R., Karpas, A., and Vann, W.F.: Capsular antibodies induce type-specific phagocytosis of capsulated Staphylococcus aureus by human polymorphonuclear leukocytes. Infect. Immun. 1986, 56:1090–1095.

1.2.23 Abschnitt 10.3.3

  • ■ Chung, A.W., Rollman, E., Center, R.J., Kent, S.J., and Stratov, I.: Rapid degranulation of NK cells following activation by HIV-specific antibodies. J. Immunol. 2009, 182:1202–1210.

  • ■ Lanier, L.L. and Phillips, J.H.: Evidence for three types of human cytotoxic lymphocyte. Immunol. Today 1986, 7:132.

  • ■ Leibson, P.J.: Signal transduction during natural killer cell activation: inside the mind of a killer. Immunity 1997, 6:655–661.

  • ■ Sulica, A., Morel, P., Metes, D., and Herberman, R.B.: Ig-binding receptors on human NK cells as effector and regulatory surface molecules. Int. Rev. Immunol. 2001, 20:371–414.

  • ■ Takai, T.: Multiple loss of effector cell functions in FcRγ-deficient mice. Int. Rev. Immunol. 1996, 13:369–381.

1.2.24 Abschnitt 10.3.4

  • ■ Beaven, M.A. and Metzger, H.: Signal transduction by Fc receptors: the FcεRI case. Immunol. Today 1993, 14:222–226.

  • ■ Kalesnikoff, J., Huber, M., Lam, V., Damen, J.E., Zhang, J., Siraganian, R.P., and Krystal, G.: Monomeric IgE stimulates signaling pathways in mast cells that lead to cytokine production and cell survival. Immunity 2001, 14:801–811.

  • ■ Sutton, B.J. and Gould, H.J.: The human IgE network. Nature 1993, 366:421–428.

1.2.25 Abschnitt 10.3.5

  • ■ Capron, A., Riveau, G., Capron, M., and Trottein, F.: Schistosomes: the road from host-parasite interactions to vaccines in clinical trials. Trends Parasitol. 2005, 21:143–149.

  • ■ Grencis, R.K.: Th2-mediated host protective immunity to intestinal nematode infections. Philos. Trans. R. Soc. Lond. B 1997, 352:1377–1384.

  • ■ Grencis, R.K., Else, K.J., Huntley, J.F., and Nishikawa, S.I.: The in vivo role of stem cell factor (c-kit ligand) on mastocytosis and host protective immunity to the intestinal nematode Trichinella spiralis in mice. Parasite Immunol. 1993, 15:55–59.

  • ■ Kasugai, T., Tei, H., Okada, M., Hirota, S., Morimoto, M., Yamada, M., Nakama, A., Arizono, N., and Kitamura, Y.: Infection with Nippostrongylus brasiliensis induces invasion of mast cell precursors from peripheral blood to small intestine. Blood 1995, 85:1334–1340.

  • ■ Ushio, H., Watanabe, N., Kiso, Y., Higuchi, S., and Matsuda, H.: Protective immunity and mast cell and eosinophil responses in mice infested with larval Haemaphysalis longicornis ticks. Parasite Immunol. 1993, 15:209–214.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murphy, K., Weaver, C. (2018). Die humorale Immunantwort. In: Janeway Immunologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56004-4_10

Download citation

Publish with us

Policies and ethics