Skip to main content

Growth of ta-C Films

  • Chapter
  • First Online:
Tetrahedrally Bonded Amorphous Carbon Films I

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 263))

  • 946 Accesses

Abstract

The understanding of the growth of tetrahedrally bonded amorphous carbon is based on the experimentally selected conditions for the preparation of ta-C films: sufficient high kinetic energy of the impinging carbon particles of at least some ten electron-volt and sufficient low temperatures, usually below 150 °C (see Chap. 7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Lifshitz, S.R. Kasi, J.W. Rabalais, Subplantation model for film growth from hyperthermal species: application to diamond. Phys. Rev. Lett. 62, 1290–1293 (1989)

    Article  Google Scholar 

  2. Y. Lifshitz, S. R. Kasi, J. W. Rabalais, Carbon (sp3) film growth from mass selected ion beams. in Properties and Characterization of Amorphous Carbon Films, ed. by J.J. Pouch, S.A. Alterovitz (Trans Tech Publications, Zürich, 1990), pp. 237–290

    Google Scholar 

  3. Y. Lifshitz, S.R. Kasi, J.W. Rabalais, W. Eckstein, Subplantation model for film growth from hyperthermal species. Phys. Rev. B 41, 10468–10480 (1990)

    Article  Google Scholar 

  4. M. Moseler, P. Gumbsch, C. Casiraghi, A.C. Ferrari, J. Robertson, The ultrasmoothness of diamond-like carbon surfaces. Science 309, 1545–1548 (2005)

    Article  Google Scholar 

  5. J.P. Hirvonen, J. Koskinen, R. Lappalainen, A. Anttila, Preparation and properties of high density, hydrogen free hard carbon films with direct ion beam or arc discharge deposition, in Properties and Characterization of Amorphous Carbon Films, ed. by J.J. Pouch, S.A. Alterovitz (Trans Tech Publications, Zürich, 1990), pp. 197–216

    Google Scholar 

  6. E.G. Spencer, P.H. Schmidt, D.C. Joy, F.J. Sansalone, Ion-beam-deposited polycrystalline diamondlike films. Appl. Phys. Lett. 29, 118–120 (1976)

    Article  Google Scholar 

  7. W. Möller, Modeling of the sp3/sp2 ratio in ion beam and plasma-deposited carbon films. Appl. Phys. Lett. 59, 2391–2393 (1991)

    Article  Google Scholar 

  8. W. Eckstein, J.P. Biersack, Self-sputtering and reflection. Zeitschrift Physik B 63, 109–120 (1986)

    Article  Google Scholar 

  9. K. Sarakinos, J. Alami, J. Dukwen, J. Woerdenweber, M. Wuttig, A semi-quantitative model for the deposition rate in non-reactive high power pulsed magnetron sputtering. J. Phys. D Appl. Phys. 41, 215301 (2008)

    Article  Google Scholar 

  10. T. Miyazawa, S. Misawa, S. Yoshida, S. Gonda, Preparation and structure of carbon film deposited by mass-separated C+ ion beam. J. Appl. Phys. 55, 188–193 (1984)

    Article  Google Scholar 

  11. N.C. Cooper, M.S. Fagan, C.M. Goringe, N.A. Marks, D.R. McKenzie, Surface structure and sputtering in amorphous carbon thin films: a tight-binding study of film deposition. J. Phys. Condens. Matters 14, 723–730 (2002)

    Article  Google Scholar 

  12. T. Sato, S. Furuno, S. Iguchi, M. Hanabusa, Diamond-like carbon films prepared by pulsed-laser evaporation. Appl. Phys. A 45, 355–360 (1988)

    Article  Google Scholar 

  13. J. Roth, J. Bohdansky, W. Ottenberger, Unity yield conditions for sputtering of graphite by carbon ions. J. Nucl. Mater. 165, 193–198 (1989)

    Article  Google Scholar 

  14. J. Roth, J.B. Roberto, K.L. Wilson, Enhanced sputtering of graphite at high temperature. J. Nucl. Mater. 123, 1447–1452 (1984)

    Article  Google Scholar 

  15. S. Uhlmann, Molecular dynamics study of effects of low energy ion bombardment in carbon and silicon systems (Untersuchung der Effekte niederenergetischen Ionen-Beschusses in Kohlenstoff- und Silizium-Systemen auf der Grundlage von Molekulardynamik-Simulationen). Thesis, University Chemnitz, 1997

    Google Scholar 

  16. H.J. Christie, M. Robinson, D.L. Roach, D.K. Ross, I. Suarez-Martinez, N.A. Marks, Simulating radiation damage cascades in graphite. Carbon 81, 105–114 (2015)

    Article  Google Scholar 

  17. H.C. Hofsäss, H. Feldermann, R. Merk, M. Sebastian, C. Ronning, Cylindrical spike model for the formation of diamondlike thin films by ion deposition. Appl. Phys. A 66, 153–181 (1998)

    Google Scholar 

  18. P.C. Kelires, Energetics and stability of diamondlike amorphous carbon. Phys. Rev. Lett. 68, 1854–1857 (1992)

    Article  Google Scholar 

  19. H.J. Christie, Molecular dynamics simulations in graphite and carbon materials. Thesis, University Salford (UK), 2014

    Google Scholar 

  20. J. Koskinen, J.-P. Hirvonen, J. Keränen, Effect of deposition temperature and growth rate on the bond structure of hydrogen free carbon films. J. Appl. Phys. 84, 648–650 (1998)

    Article  Google Scholar 

  21. B. Rother, Calculations on ion-assisted deposition techniques examined in relation to the deposition of diamond-like carbon coatings. Surf. Coat. Technol. 46, 361–369 (1991)

    Article  Google Scholar 

  22. W. Eckstein, Computer-Simulation of Ion-solid Interaction (Springer, New York, 1991)

    Book  Google Scholar 

  23. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Ranges of Ions in Matter, vol. 1 (Pergamon, Oxford, 1985)

    Google Scholar 

  24. J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM. The Stopping and Ranges of Ions in Solids. (SRIM, Chester/ML, 2010), www.srim.org

  25. M.T. Robinson, The binary collision approximation: background and introduction. Radiat. Eff. Defects Solids 130–131, 3–20 (1994)

    Article  Google Scholar 

  26. M.T. Robinson, MARLOWE binary collision cascade simulation program, version 15b. A guide for users. (Oak Ridge Nat. Lab., Oak Ridge/TN, 2002)

    Google Scholar 

  27. M.T. Robinson, I.M. Torrens, Computer simulation of atomic-displacement cascades in solids in the binary-collision approximation. Phys. Rev. B 9, 5008–5024 (1974)

    Article  Google Scholar 

  28. Y. Lifshitz, C. Roux, K. Boyd, W. Eckstein, J.W. Rabalais, Analysis of carbon film growth from low energy ion beams using dynamic trajectory simulations and Auger electron spectroscopy. Nucl. Instrum. Methods Phys. Res. B 83, 351–356 (1993)

    Article  Google Scholar 

  29. W. Eckstein, A. Sagara, K. Kamada, Incident angle dependence of sputtering yields for hydrogen bombardment of light elements. J. Nucl. Mater. 150, 266–271 (1987)

    Article  Google Scholar 

  30. F. Banhart, Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62, 1181–1221 (1999)

    Article  Google Scholar 

  31. H.J. Steffen, D. Marton, J.W. Rabalais, Displacement energy threshold for Ne+ irradiation of graphite. Phys. Rev. Lett. 68, 1726–1729 (1992)

    Article  Google Scholar 

  32. G.H. Kinchin, R.S. Pease, The mechanism of the irradiation disordering of alloys. J. Nucl. Energy 1, 200–202 (1954)

    Google Scholar 

  33. J. Koike, D.M. Parkin, T.E. Mitchell, Displacement threshold energy for type IIa diamond. Appl. Phys. Lett. 60, 1450–1452 (1992)

    Article  Google Scholar 

  34. J.C. Bourgoin, B. Massarani, Threshold energy for atomic displacement in diamond. Phys. Rev. B 14, 3690–3694 (1976)

    Article  Google Scholar 

  35. E.A. Burgermeister, C.A.J. Ammerlaan, G. Davies, Thermal and optical measurements on vacancies in type IIa diamond. J. Phys. C 13, L691–L695 (1980)

    Article  Google Scholar 

  36. J.F. Prins, T.E. Derry, J.P.F. Sellschop, Volume expansion of diamond during ion implantation. Phys. Rev. B 34, 8870–8874 (1986)

    Article  Google Scholar 

  37. W. Wu, S. Fahy, Molecular-dynamics study of single-atom radiation damage in diamond. Phys. Rev. B 49, 3030–3035 (1994)

    Article  Google Scholar 

  38. J. Robertson, Deposition mechanisms for promoting sp3 bonding in diamond-like carbon. Diam. Relat. Mater. 2, 984–989 (1993)

    Article  Google Scholar 

  39. P. Neumaier, A. Bergmaier, W. Eckstein, R. Fischer, H. Hofsäss, H.U. Jäger, H. Kröger, C. Ronning, G. Dollinger, Bimodal range distribution of low-energy carbon ion in tetrahedral amorphous carbon. Europ. Phys. Lett. 90, 46002 (2010)

    Article  Google Scholar 

  40. P. Neumaier, G. Dollinger, A. Bergmaier, I. Genchev, L. Görgens, L. Fischer, C. Ronning, H. Hofsäss, High-resolution elastic recoil detection utilizing Bayesian probability theory. Nucl. Instrum. Methods Phys. Res. B 183, 48–61 (2001)

    Article  Google Scholar 

  41. C.A. Davis, G.A.J. Amaratunga, K.M. Knowles, Growth mechanism and cross-sectional structure of tetrahedral amorphous carbon thin films. Phys. Rev. Lett. 80, 3280–3283 (1998)

    Article  Google Scholar 

  42. G.H. Kinchin, R.S. Pease, The displacement of atoms in solids by radiation. Rep. Prog. Phys. 18, 1–51 (1955)

    Article  Google Scholar 

  43. M.J. Norgett, M.T. Robinson, I.M. Torrens, A proposed method of calculating displacement dose rates. Nucl. Eng. Des. 33, 50–54 (1975)

    Article  Google Scholar 

  44. H.U. Jäger, A.Yu. Belov, ta-C deposition simulations: film properties and time-resolved dynamics of film formation. Phys. Rev. B 68, 024201 (2003)

    Article  Google Scholar 

  45. E.-J. Dohnt, The Glass Transition: Relaxation Dynamics in Liquids and Disordered Materials (Springer, New York, 2001), p. 372

    Google Scholar 

  46. A. Hedler, S. Klaumünzer, W. Wesch, Amorphous silicon exhibits a glass transition. Nat. Mater. 3, 804–809 (2004)

    Article  Google Scholar 

  47. P.C. Kelires, Structural properties and energetics of amorphous forms of carbon. Phys. Rev. B 47, 1829–1839 (1993)

    Article  Google Scholar 

  48. P.C. Kelires, Review of Monte Carlo simulations of diamondlike amorphous carbon: bulk, surface, and interface structural properties, in Amorphous Carbon: State of the Art, ed. by S.R.P. Silva, J. Robertson, W.I. Milne, G.A.J. Amaratunga (World Scientific, Singapur, 1998), pp. 73–88

    Google Scholar 

  49. L.M. Ghiringhelli, J.H. Los, A. Fasolini, E.J. Meijer, Improved long-range reactive bond order potential for carbon II. Molecular simulation of liquid carbon. Phys. Rev. B 72, 214103 (2005)

    Google Scholar 

  50. L.M. Ghiringhelli, E.J. Meijer, Liquid carbon: freezing line and structure near freezing, in Computer-Based Modelling of Novel Carbon Systems and Their Properties, ed. by L. Colombo, A. Fasolino (Springer, Dordrecht, 2010), pp. 1–36

    Google Scholar 

  51. H.U. Jäger, K. Albe, Molecular-dynamics simulations of steady state growth of ion-deposited tetrahedral amorphous carbon films. J. Appl. Phys. 88, 1129–1135 (2000)

    Article  Google Scholar 

  52. C. Mathioudakis, G. Kopidakis, P.C. Kelires, C.Z. Wang, K.M. Ho, Physical trends in amorphous carbon: A tight-binding molecular-dynamics study. Phys. Rev. B 70, 125202 (2004)

    Article  Google Scholar 

  53. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, H.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984)

    Article  Google Scholar 

  54. H.P. Kaukonen, R.M. Nieminen, Atomic-scale modelling of ion-beam-induced growth of amorphous carbon. Phys. Rev. B 61, 2806–2811 (2000)

    Article  Google Scholar 

  55. H.P. Kaukonen, R.M. Nieminen, Molecular-dynamics simulation of the growth of diamondlike films by energetic carbon-atom beams. Phys. Rev. Lett. 68, 620–623 (1992)

    Article  Google Scholar 

  56. A.S. Bakai, M.P. Fateev, Y.A. Turkin, Phase states in amorphous carbon. arXiv:cond-mat/0108518v1 (30 Aug 2001)

  57. N. Marks, Generalizing the environment-dependent interaction potential for carbon. Phys. Rev. B 63, 035401 (2000)

    Article  Google Scholar 

  58. K. Kohary, S. Kugler, Growth of amorphous carbon: low energy molecular dynamics simulation of atomic bombardment. Phys. Rev. B 63, 193404 (2001)

    Article  Google Scholar 

  59. N. Marks, Modelling diamond-like carbon with the environment-dependent interaction potential. J. Phys. Condens. Matter 14, 2901–2927 (2002)

    Article  Google Scholar 

  60. N. Marks, Thin film deposition of tetrahedral amorphous carbon: a molecular dynamics study. Diam. Relat. Mater. 14, 1223–1231 (2005)

    Article  Google Scholar 

  61. N.A. Marks, J.M. Bell, G.K. Pearce, D.R. McKenzie, M.M.M. Bilek, Atomistic simulation of energy and temperature effects in the deposition and implantation of amorphous carbon thin films. Diam. Relat. Mater. 12, 2003–2010 (2003)

    Article  Google Scholar 

  62. G.K. Pearce, N.A. Marks, D.R. McKenzie, M.M.M. Bilek, Molecular dynamics simulation of the thermal spike in amorphous carbon thin films. Diam. Relat. Mater. 14, 921–927 (2005)

    Article  Google Scholar 

  63. S. Uhlmann, Th Frauenheim, Y. Lifshitz, Molecular-dynamics study of the fundamental processes involved in subplantation of diamondlike carbon. Phys. Rev. Lett. 81, 641–644 (1998)

    Article  Google Scholar 

  64. D.R. McKenzie, D. Muller, B.A. Pailthorpe, Compressive-stress-induced formation of thin-film tetrahedral amorphous carbon. Phys. Rev. Lett. 67, 773–776 (1991)

    Article  Google Scholar 

  65. D. McKenzie, D. Muller, B. Pailthorpe, Z. Wang, E. Kravtchinskaia, D. Segal, P. Lukins, P. Swift, P. Martin, G. Amaratunga, P. Gaskell, A. Saeed, Properties of tetrahedral amorphous carbon prepared by vacuum arc deposition. Diam. Relat. Mater. 1, 51–59 (1991)

    Article  Google Scholar 

  66. D.R. McKenzie, Generation and applications of compressive stress induced by low energy ion beam bombardment. J. Vac. Sci. Technol. B 11, 1928–1935 (1993)

    Article  Google Scholar 

  67. D.R. McKenzie, Tetrahedral bonding in amorphous carbon. Rep. Prog. Phys. 59, 1611–1664 (1996)

    Article  Google Scholar 

  68. Y. Yin, D.R. McKenzie, A theory for the formation of tetrahedral amorphous carbon including deposition rate effects. Thin Solid Films 280, 95–100 (1996)

    Article  Google Scholar 

  69. C.A. Davis, A simple model for the formation of compressive stress in thin films by ion bombardment. Thin Solid Films 226, 30–34 (1993)

    Article  Google Scholar 

  70. A.I. Kalinichenko, S.S. Perepelkin, V.E. Strel’nitskij, Thermodynamic conditions of ta-C formation at implantation of noble-gas ions in carbon. Diam. Relat. Mater. 15, 365–370 (2006)

    Google Scholar 

  71. J. Robertson, The deposition mechanism of diamond-like a-C and a-C:H. Diam. Relat. Mater. 3, 361–368 (1994)

    Article  Google Scholar 

  72. J. Robertson, Diamond-like amorphous carbon. Mater. Sci. Eng. R 37, 129–281 (2002)

    Article  Google Scholar 

  73. F. Seitz, J.S. Koehler, Displacement of atoms during irradiation, in Solid State Physics, Vol. 2, ed. by F. Seitz, D. Turnbull (Academic Press, New York, 1956), pp. 305–448

    Google Scholar 

  74. G.H. Vineyard, Thermal spikes and activated process. Radiat. Eff. Defects Solids 29, 245–248 (1976)

    Article  Google Scholar 

  75. J. Robertson, Deposition mechanism of a-C and a-C:H. J. Non-Cryst. Solids 164, 1115–1118 (1993)

    Article  Google Scholar 

  76. J. Robertson, Deposition mechanism of diamond-like carbon and cubic boron nitride. Radiat. Eff. Defects Solids 142, 63–90 (1997)

    Article  Google Scholar 

  77. J. Robertson, Diamond-like carbon. Pure Appl. Chem. 66, 1789–1796 (1994)

    Article  Google Scholar 

  78. H. Windischmann, An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering. J. Appl. Phys. 62, 1800–1807 (1987)

    Article  Google Scholar 

  79. J. Robertson, Mechanism of sp3 bond formation in the growth of diamond-like carbon. Diam. Relat. Mater. 14, 942–948 (2005)

    Article  Google Scholar 

  80. I. Koponen, M. Harkovirta, R. Lappalainen, Modeling the ion energy dependence of the sp2/sp3 bonding ratio in amorphous diamondlike films produced with a mass-separated ion beam. J. Appl. Phys. 78, 5837–5839 (1995)

    Article  Google Scholar 

  81. H.C. Hofsäss, M. Sebastian, H. Feldermann, R. Merk, C. Ronning, Modeling of the ion-beam growth of covalently-bonded diamondlike materials, in Covalently Bonded Disordered Thin-Film Materials. Materials Research Society Symposium Proceedings, vol. 498, ed. by M. Siegal, W.I. Milne, J.E. Jaskie (MRS, Warrendale/PA, 1998), pp. 129–134

    Google Scholar 

  82. G. Reisse, C. Schürer, U. Ebersbach, K. Bewilogua, K. Breuer, H.-J. Erler, C. Weißmantel, Herstellung und Untersuchung von i-C-Schichten (Generation and Investigation of i-C films). Wissenschaftliche Zeitschrift Technische Hochschule Karl-Marx-Stadt 22, 633–680 (1980)

    Google Scholar 

  83. C. Weißmantel, Ion-based growth of special films: techniques and mechanisms. Thin Solid Films 92, 55–63 (1982)

    Article  Google Scholar 

  84. C. Weissmantel, K. Bewilogua, D. Dietrich, H.-J. Erler, H.-J. Hinneberg, S. Klose, W. Nowick, G. Reisse, Structure and properties of quasi-amorphous films prepared by ion beam techniques. Thin Solid Films 72, 19–31 (1980)

    Article  Google Scholar 

  85. B. Rauschenbach, K. Hohmuth, A simple approach to the analysis of ion collision cascade in solids based on the shock wave model. Physica Status Solidi (a) 75, 159–168 (1983)

    Article  Google Scholar 

  86. R.P. Webb, D.E. Harrison, Evidence for ion-induced hypersonic shock waves for computer simulations of argon ion bombardment of copper. Appl. Phys. Lett. 39, 311–312 (1981)

    Article  Google Scholar 

  87. D. Marton, K.J. Boyd, I.W. Rabalais, Y. Lifshitz, Semiquantitative subplantation model for low energy ion interactions with surfaces. II. Ion beam deposition of carbon and carbon nitride. J. Vac. Sci. Technol. A 16, 455–462 (1998)

    Google Scholar 

  88. J. Kulik, G.D. Lempert, E. Grossmann, D. Marton, J.W. Rabalais, Y. Lifshitz, sp3 content of mass-selected ion-beam-deposited carbon films determined by inelastic and elastic electron scattering. Phys. Rev. B 52, 15812–15822 (1995)

    Article  Google Scholar 

  89. A. Ferrari, B. Kleinsorge, N. Morrison, A. Hart, V. Stolojan, J. Robertson, Stress reduction and bond stability during thermal annealing of tetrahedral amorphous carbon. J. Appl. Phys. 85, 7191–7197 (1999)

    Article  Google Scholar 

  90. R. Kalish, Y. Lifshitz, K. Nugent, S. Prawer, Thermal stability and relaxation in diamond-like-carbon. A Raman study of films with different sp3 fractions (ta-C to aC). Appl. Phys. Lett. 74, 2936–2938 (1999)

    Article  Google Scholar 

  91. K.J. Boyd, D. Marton, J.W. Rabalais, S. Uhlmann, T. Frauenheim, Semiquantitative subplantation model for low energy ion interactions with surfaces. I. Noble gas ion-surface interactions. J. Vac. Sci. Technol. A 16, 444–462 (1998)

    Google Scholar 

  92. E. Grossmann, G.D. Lempert, J. Kulik, D. Marton, J.W. Rabalais, Y. Lifshitz, Role of ion energy in determination on the sp3 fraction of ion beam deposited carbon films. Appl. Phys. Lett. 68, 1214–1216 (1996)

    Article  Google Scholar 

  93. Y. Lifshitz, G.D. Lempert, S. Rotter, I. Avigal, C. Uzan-Saguy, R. Kalish, The influence of substrate temperature during ion beam deposition on the diamond-like or graphitic nature of carbon films. Diam. Relat. Mater. 2, 285–290 (1993)

    Article  Google Scholar 

  94. B. Schultrich, Modeling of ta-C growth: Influence of the technological parameters. Diam. Relat. Mater. 20, 785–792 (2011)

    Article  Google Scholar 

  95. J.P. Biersack, L.G. Haggmark, A Monte Carlo computer program for the transport of energetic ions in amorphous targets. Nucl. Instrum. Methods Phys. Res. 174, 257 (1980)

    Article  Google Scholar 

  96. T. Mura, Micromechechanics of Defects in Solids (Kluwer, Dordrecht, 1993), p. 121

    Google Scholar 

  97. U. Stephan, T. Frauenheim, P. Blaudeck, G. Jungnickel, π bonding versus electronic-defect generation: An examination of band-gap properties in amorphous carbon. Phys. Rev. B 49, 1489–1503 (1994)

    Google Scholar 

  98. D.C. McCulloch, D.R. McKenzie, C.M. Goringe, Ab initio simulations of the structure of amorphous carbon. Phys. Rev. B 61, 2349–2355 (2000)

    Article  Google Scholar 

  99. R. Haerle, E. Riedo, A. Pasquarello, A. Baldereschi, sp 2/sp 3 hybridization ratio in amorphous carbon from C 1s core-level shifts: X-ray photoelectron spectroscopy and first-principles calculation. Phys. Rev. B 65, 045101 (2001)

    Article  Google Scholar 

  100. Y. Lifshitz, G.D. Lempert, E. Grossmann, I. Avigal, C. Uzan-Saguay, R. Kalish, J. Kulik, D. Marton, J.W. Rabalais, Growth mechanisms of DLC films from C+: experimental studies. Diam. Relat. Mater. 4, 318–323 (1995)

    Article  Google Scholar 

  101. P.J. Fallon, Y.S. Veerasamy, C.A. Davis, J. Robertson, G.A.J. Amaratunga, W.I. Milne, J. Koskinen, Properties of filtered-ion-beam-deposited diamondlike carbon as a function of ion energy. Phys. Rev. B 48, 4777–4782 (1993) (Erratum: Physical Review B 49, 2287 (1993))

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Explanations

Explanations

1.1 E1 Stopping Power S with Power Law (for (8.5), (8.32))

For the impact of carbon ions on carbon targets, the stopping power S(ε) is according to (8.4) approximately given by

$$ \text{S}(\upvarepsilon) = - \text{d}\,\upvarepsilon/\text{ds}_{\text{i}} \approx \text{A}\,\upvarepsilon^{{1 - \text{B}}} $$
(8.80)

with B ≈ 0.6. For an ion with the initial energy ε0, the relation between path length si and residual energy ε is given by

$$ s_{i} \left( \varepsilon \right) = - \int\limits_{{\varepsilon_{0} }}^{\varepsilon } {d\varepsilon^{\prime } } \frac{1}{{S\left( {\varepsilon^{\prime } } \right)}} = \frac{1}{A}\int\limits_{{\varepsilon_{0} }}^{\varepsilon } {d\varepsilon^{\prime } } \varepsilon^{{\prime^{B - 1} }} = \frac{1}{AB}\left( {\varepsilon_{0}^{B} - \varepsilon^{B} } \right) $$
(8.81a)

and

$$ \upvarepsilon\left( \text{s}_{\text{i}} \right) =\upvarepsilon_{0} \left( {1{-}\text{s}_{\text{i}} /\text{s}_{0} } \right)^{{1/\text{B}}} $$
(8.81b)

where s0 = ε B0 /AB denotes the total path length up to the ion stop. The fraction ε/ε0 of the ion energy is lost on the first part si/s0 = 1 − (ε/ε0)B. For ε/ε0 = 0.5 and B = 0.6 follows si/s0 = 0.34.

With (8.81a, b), the variation of the stopping power along the ion track follows to

$$ \text{S}\left( {\text{s}_{\text{i}} } \right) = \text{A}\left( {\text{AB}} \right)^{{\left( {1 - \text{B}} \right)/\text{B}}} \left( {\text{s}_{0} {-}\text{s}_{\text{i}} } \right)^{{\left( {1 - \text{B}} \right)/\text{B}}} = \left( {\text{AB}} \right)^{{1/\text{B}}} /\text{B}\left( {\text{s}_{0} {-}\text{s}_{\text{i}} } \right)^{{1/\text{B}{-}1}} $$
(8.82)

The stopping power decreases along the path.

From S = −dε/dt 1/v follows for the time timp of a collision cascade:

$$ t_{imp} \left( {\varepsilon_{0} } \right) = \sqrt {\frac{m}{2}} \int\limits_{0}^{{\varepsilon_{0} }} {d\varepsilon } \frac{1}{\sqrt \varepsilon \,S\left( \varepsilon \right)} = \sqrt {\frac{m}{2}} \frac{1}{A}\int\limits_{0}^{{\varepsilon_{0} }} {d\varepsilon \,\varepsilon^{B - 1/2} } = \sqrt {\frac{m}{2}} \frac{1}{{A\,\left( {B - 1/2} \right)}}\varepsilon_{0}^{B - 1/2} $$

1.2 E2 Binary Collision Approximation and TRIM Program (for Sect. 8.2)

TRIM (=Transport of Ions in Matter) is a Monte Carlo program for the simulation of the impact of energetic ions into amorphous carbons, developed by the groups of J.P. Biersack and J.F. Ziegler [23, 95] and continuously updated [24]. It is based on the binary collision approximation, i.e. the influence of neighbored atoms is neglected.

An ion (mass mi, velocity v0, energy ε0 = mi/2 v 20 ) is colliding with a resting target atom (mass mt). The collision process is best treated within the center of mass system (CMS), which is moved with the velocity vC = mi/(mi + mt) v0 against the laboratory system. If the interaction of the both particles depends only on their mutual distance r, their motion can be reduced to the movement of one particle with the reduced mass

$$ \upmu_{\text{C}} = \text{m}_{\text{i}} \text{m}_{\text{t}} /\left( {\text{m}_{\text{i}} + \text{m}_{\text{t}} } \right) $$
(8.83)

in the interaction potential V(r). Due to the vanishing total momentum, particles move always in the opposite direction. In CMS, the system momentum is zero before and after the collision: mi vi = mt vt, corresponding to a constant velocity ratio vi/vt = mt/mi. From the energy conservation follows 2 ε = mi v 2i  + mt v 2t  = v 2t (mi (vi/vt)2 + mt) = v 2t (m 2t /mi + mt) = const. That means, that the absolute values of the velocities remain unchanged. For balancing the momentums, the particles must fly into opposite directions. Hence, the scattering angles Φ of the target atom and Θ of the ion are related by Φ + Θ = π in the CMS. They can be transformed into the corresponding angles φ and ϑ within the laboratory system

$$ \begin{array}{*{20}l} {{\varphi } =\Phi /2} \hfill & {\tan \,\upvartheta = \left( {\text{m}_{\text{t}} /\text{m}_{\text{i}} } \right)\,\sin \,\Theta /(1 + \left( {\text{m}_{\text{t}} /\text{m}_{\text{i}} } \right)\cos \,\Theta )} \hfill \\ \end{array} $$
(8.84)

The kinetic energy T transferred by the collision from the ion to the target atom is given by

$$ \text{T} = 4\,\upvarepsilon_{0} \text{m}_{\text{i}} \,\text{m}_{\text{t}} /\left( {\text{m}_{\text{i}} + \text{m}_{\text{t}} } \right)^{2} \,\text{sin}^{2}\Theta /2 $$
(8.85)

The angle Θ can be calculated from the “general orbit equation”

$$ \Theta = \pi - 2\int\limits_{{r_{0} }}^{\infty } {\frac{p\,dr}{{r^{2} \sqrt {1 - \frac{{V(r)(1 + m_{i} /m_{t} )}}{{\varepsilon_{0} }} - \frac{{p^{2} }}{{r^{2} }}} }}} $$
(8.86)

where r0 denotes the distance of closest approach of both particles. The impact parameter p constitutes the perpendicular distance of the ion direction from the resting atom, i.e. the smallest distance, the ion would pass the target atom, if it would not be deflected.

In the case of coincident kinds of projectile and target atoms (mi = mt) holds

$$ \upvartheta =\Theta /2,\quad {\varphi } =\uppi/2 -\upvartheta $$
(8.87)
$$ \text{T} =\upvarepsilon_{0} \text{sin}^{2}\upvartheta $$
(8.88)

In the TRIM program, the interatomic potential V(r) is described by the electrostatic repulsion of the both nuclei, partially screened by their merging electron clouds:

$$ V(r) = \frac{1}{{4\pi \,\varepsilon_{0} }}\frac{{Z_{i} \,Z_{t} \,e^{2} }}{r}\,\Phi _{i,t} (r) $$
(8.89)

The effect of the electrons is considered by the screening function Φi,t(r). It is determined by the interaction of fixed electron distributions without any reconfiguration during the collision. For the ions and the target atoms as well electron distributions of their solid states are used. They are spherically symmetrized by averaging over all spatial orientations. Besides the electrostatic interactions also quantum-mechanical effects are included in a simplified manner. The individual functions ΦI,t can be approximated by a universal function Φ(r/a), where the atomic distance r is scaled by the “screening length” a = 0.8854 a0/ (Z 0.23i  + Z 0.23t ) and a0 = 0.0529 nm (Bohr radius):

$$ \Phi (x) = 0.1818\,e^{ - 3.2x} + 0.5099\,e^{ - 0.9423x} + 0.2802\,e^{ - 0.4028x} + 0.2817\,e^{ - .2016x} $$
(8.90)

The individual collision is determined by the energy of the impacting ion ε0 and the impact parameter p. According to the random atomic arrangement, the probability W(p) for an impact parameter below p is given by the corresponding area fraction

$$ \begin{array}{*{20}l} {\text{W}\left( \text{p} \right) =\uppi\,\text{p}/\text{L}^{2} } \hfill & {\text{for}\,\text{p} < \text{L}/\surd\uppi} \hfill \\ \end{array} $$
(8.91)

For larger p values the collision is assigned to the neighbored atom. In the Monte Carlo simulation the impact parameter is selected from

$$ \text{p} = \text{L}(\text{R}/\uppi)^{1/2} $$
(8.92)

where R denotes a random number, evenly distributed between 0 and 1. For the determination of Θ, TRIM uses the expression

$$ \cos \,\Theta /2 = \frac{\rho + p + \delta }{{\rho + r_{0} }} $$
(8.93)

instead of the general orbit equation for saving computer capacity. Herein the distance of closest approach r0 is given by the condition

$$ 1 - \frac{{V(r_{0} )(1 + m_{i} /m_{t} )}}{{E_{0} }} - \frac{{p^{2} }}{{r_{0}^{2} }} = 0 $$
(8.94)

The quantity ρ = ρi + ρt, the sum of the radii of curvature of the trajectories at closest approach, can be obtained from

$$ \rho = \frac{{2\left( {\frac{{E_{0} }}{{1 + m_{i} m_{t} }} - V(r_{0} )} \right)}}{{ - V^{\prime } (r_{0} )}} $$
(8.95)

The only approximation consists in the treatment of the usually small correction term δ. According to a fitting procedure it is derived from an analytical expression, depending on E0, p, mi/mt, Zi and Zt.

After the collision, it is assumed, that the particles fly straightforward in the asymptotic directions up to next collision after a path length λ. The maximum flight distance is estimated by λmax ≈ L = n−1/3 (n = atomic density of the target). For high energy ions, the free flight path approximation of TRIM saves CPU time by using larger free path length according to the mean distances, where a relevant collision with scattering by some degrees could be expected. The statistical arrangement in the amorphous material is considered by a random factor R between 0 and 1 (λ = R · λmax).

In this way the path of an impinging ion is followed from collision to collision until the ion energy is reduced to a fixed value. The same procedure is made with the collided atoms, if the transferred energy εt exceeds the displacement energy εd. Then it will be the starting point of a new collision cascade with the initial energy εt − εb, where εb denotes the binding energy.

Atoms, which cross the surface plane leave the target, if their kinetic energy in normal direction exceeds the surface binding energy εsb. It is usually identified with the sublimation energy, notwithstanding possible modifications by roughness and ion bombardment.

1.3 E3 Film Growth by Subplantation (for (8.28))

Under the continuous impact of ions the surface region of a ta-C film grows by incorporation of the incident ions beneath the surface (subplantation). The incident ion flux density j(x, t) decreases with the depth due to stopping in upper layers. The flux density of the ions, stopping in Δx, is given by ∂j/∂x Δx, where x is directed inwards opposite to the growth direction. The particle number (per area) ΔN in a thin slab of thickness Δx in the depth x amounts to ΔN = n(x, t) Δx. It increases in time according to

$$ - \partial \text{j}/\partial \text{x}\,\Delta \text{x} = \text{d}\Delta \text{N}/\text{dt} = \Delta \text{x}\,\partial \text{n}/\partial \text{t} + \text{n}\partial \Delta \text{x}/\partial \text{t} $$
(8.96)

It is assumed, that by elastic expansion the width Δx will increase in proportion to the relative change of the density:

$$ \frac{\partial \Delta x/\partial t}{\Delta x} = c\frac{\partial n/\partial t}{n} $$
(8.97)

Then (8.96) reduces to

$$ - \partial \text{j}/\partial \text{x} = \left( {1 + \text{c}} \right)\partial \text{n}/\partial \text{t} $$
(8.98)

In the stationary state the density distribution shifts outwards with the linear growth rate w = dh/dt:

$$ \text{n}\left( {\text{x} - \text{wt},\text{t}} \right) = \text{n}\left( {\text{x},0} \right) = \text{const}. $$
(8.99)

This allows to transform the time dependence into a depth dependence:

$$ \text{dn}/\text{dt} = - \text{w}\,{\partial }\,\text{n}/{\partial }\,\text{x} + {\partial }\,\text{n}/{\partial }\,\text{t} = 0 \Rightarrow {\partial }\,\text{n}/{\partial }\,\text{t} = \text{w}\,{\partial }\,\text{n}/{\partial }\,\text{x} $$
(8.100)

The incident particle flux density js = j(xs) leads in δt on the area A to an increase of the film volume δV = A δh = v js A δt, where v = 1/n0 denotes the atomic volume in the bulk film with the density n0:

$$ \text{w} = \text{dh}/\text{dt} = \text{j}_{\text{s}} /\text{n}_{0} $$
(8.101)

With these equations, (8.98) can be transformed into

$$ \partial \text{j}/\partial \text{x} = - \left( {1 + \text{c}} \right)\text{j}_{\text{s}} /\text{n}_{0} \,\partial \text{n}/\partial \text{x} $$
(8.102)

The stationary density distribution n(x) is then given by

$$ n(x) = n(x,0) = - \frac{{n_{0} }}{{(1 + c)j_{s} }}\int\limits_{0}^{x} {dx^{\prime } } \frac{{\partial j(x^{\prime } ,0)}}{\partial x} + b = \frac{{n_{0} }}{{(1 + c)j_{s} }}\left( {j(0,0) - j(x,0)} \right) + b $$
(8.103)

The both unknown constants b and c are determined from the density n(0) = ns at the surface, where j(0, 0) = js and from the bulk density n0 in the depth beyond the ion range, where j = 0.

The resulting density distribution within the surface region

$$ \text{n}\left( \text{x} \right) = \text{n}_{0} - \left( {\text{n}_{0} {-}\text{n}_{\text{s}} } \right)\text{j}\left( \text{x} \right)/\text{j}_{\text{s}} $$
(8.104)

changes accordingly to the local ion flux density j(x).

1.4 E4 Kinchin-Pease Model (for Sect. 8.2)

The Kinchin-Pease model determines the number of displaced atoms by using the following approximations for the formation of the collision cascade [32, 42]:

  • separation into a series of two-body collisions,

  • elastic collisions (only exchange of kinetic energy, no electronic excitations, no lattice excitation),

  • atoms as hard spheres (interaction only in direct contact, changed direction according to regular reflection)

  • random arrangement of the atoms (no orientation effects such as channeling)

  • displacement of an atom from a stable site to a metastable position if and only if the energy of the moving atom exceeds the displacement energy εd, If the remaining energy of the colliding atom has been dropped below εd, it rests at the site of the displaced atom (replacement collision).

When two identical hard and smooth spheres (radius R) collide, there is only some transfer of momentum perpendicular to their contact plane. Hence, in the center-of-mass system the deflection of the spheres corresponds to regular reflection with the same angle ϑ for entrance and exit. With cosϑ = b/2R it is determined by the collision parameter b (Fig. 8.47). According to (8.84) the energy T transferred by a collision with the kinetic energy ε0 is given by the asymptotic scattering angle Θ = 2ϑ:

Fig. 8.47
figure 47

Scheme of the collision of two identical hard spheres in their center-of-mass system

$$ \text{T} =\upvarepsilon_{0} \text{sin}^{2}\Theta /2 =\upvarepsilon_{0} \left( {1{-}\left( {\text{b}/2\text{R}} \right)^{2} } \right) $$
(8.105)

The probability dP for a specific energy transfer T or for the corresponding b value is given by the area ratio of the b range dA = 2π b db to the total cross section A = π (2R)2:

$$ \text{dP} = \text{dA}/\text{A} = \text{b}/2\text{R}^{2} \text{db} = \left| {\text{dT}} \right|/\upvarepsilon_{0} $$
(8.106)

The energy transfer is equally distributed between 0 and ε0. In the mean the energy is symmetrically split between the moving particle and the particle in rest. The mean transferred energy <T> = ε0/2 corresponds to scattering angles Θ = 90° in the CMS and ϑ = 45° in the laboratory system.

When by successive collisions the energy of all atoms in the cascade lies in the range between 0 and 2εd, the formation of the cascade has been completed and the maximum number Nd of displaced atoms has been achieved. Atoms with a transferred energy below εd must remain on their original positions. Atoms with an energy between εd and 2εd leave their sites. They may (1) displace another atom by transferring T > εd, but have now not enough energy to leave the freed site or (2) they transfer less energy <εd and will itself further run as an interstitial. In both cases the number of displaced atoms is not changed. Thus the atoms with final energies in the range between εd and 2εd (or their successors) are the sought Nd displaced atoms. Due to the equipartition of the transferred energy, the number of atoms in these both ranges of the same width εd coincides. The total number N of atoms, which all carry now some of the impact energy is given by number 2 Nd of bounced atoms plus the incident ion:

$$ N = 2\,N_{d} + 1 = \int\limits_{0}^{{2\varepsilon_{d} }} {d\varepsilon \,g\left( \varepsilon \right)} = \int\limits_{0}^{{2\varepsilon_{d} }} {d\varepsilon \,g = 2\varepsilon_{d} \,g} $$
(8.107)

where g(ε) = g = const. describes the final equipartitioned energy distribution. The total energy is given by

$$ \varepsilon_{0} = \int\limits_{0}^{{2\varepsilon_{d} }} {d\varepsilon \,g\left( \varepsilon \right)\,} \varepsilon = \frac{{\left( {2\varepsilon_{d} } \right)^{2} }}{2}\,g = \varepsilon_{d} \left( {2N_{d} + 1} \right) $$
(8.108)

This yields the number of displaced atoms in the collision cascade

$$ \text{N}_{\text{d}} = (\upvarepsilon_{0} -\upvarepsilon_{\text{d}} )/2\upvarepsilon_{\text{d}} $$
(8.109)

Equation (8.109) represents a modification of the well-known Kinchin-Pease formula [32, 42]

$$ \text{N}_{\text{d}} =\upvarepsilon_{0} /2\upvarepsilon_{\text{d}} $$
(8.110)

for lower energies, comparable with the displacement energy and correspondingly few displacements.

1.5 E5 Thermal Spike Model (for Sect. 8.3)

The thermal spike model treats the thermal induced processes after an ion impact in the approximation of a continuum with classical heat conduction.

The transient temperature field due to radial heat conduction from a concentrated point-like energy pulse ε (corresponding to the Green’s function of the three-dimensional heat conduction equation) is given by

$$ T\left( {r,t} \right) = T_{0} + \frac{\varepsilon }{{8\pi^{3/2} \rho c}}\frac{1}{{\left( {a\,t} \right)^{3/2} }}e^{{ - \frac{{r^{2} }}{4at}}} $$
(8.111)

where ρ, c and a denote the density, the mass specific heat capacity and the thermal diffusivity, respectively. The representative heat diffusion length amounts to lth = √<r2> = (6 a t)1/2.

The frequency f of atomic displacements is described by a thermally activated process with the activation energy q:

$$ f = f_{0} \,e^{{ - \frac{q}{kT}}} $$
(8.112)

The total number of rearrangements is then given by

$$ N_{d} = n_{0} \int {dt} \,\int {dV} \,f_{0} \,e^{{ - \frac{q}{{kT\left( {r,t} \right)}}}} $$
(8.113)

For the thermally induced processes during the ion impact with temperatures of some thousand Kelvin within the spike, the contribution of the basis temperature T0 can be neglected. The exponentials are approximated by unit step functions: exp(−x) ≈ 1 for x < 1 and exp(−x) ≈ 0 for x > 1.

In the case of a point-like source, the thermal activated processes are concentrated in a central sphere with radius r(t) = lth(t) = (6a · t)1/2 and volume V(t) = 4π/3 r3(t). Inside the sphere, a homogeneous temperature T(t) = T(r(t), t) is assumed. The transition probability is one, as long kT(t) ≥ q. The number Nd of displacements is then given by:

$$ N_{d} \approx n_{0} \,f_{0} \int\limits_{0}^{{t_{d} }} {dt\,V_{d} \left( t \right) = n_{0} \,f_{0} \frac{64\pi }{15}a^{3/2} t_{d}^{5/2} } $$
(8.114)

The upper bound td is given by the condition kT(td) = q:

$$ t_{d} = \frac{1}{4\pi \,a}\left( {\frac{k\,\varepsilon }{q\,\rho c}} \right)^{2/3} $$
(8.115)

leading to [17, 73]

$$ N_{d} \approx 0.024\frac{{n_{0} \,f_{0} }}{a}\left( {\frac{k\,\varepsilon }{q\,\rho c}} \right)^{5/3} $$
(8.116)

With the approximations n0 ≈ 1/d3, a ≈ f0 d2/3 and ρc ≈ 3 nk = 3 k/d3, (8.116) simplifies to

$$ N_{d} \approx 0.012\left( {\frac{\varepsilon }{q}} \right)^{5/3} $$
(8.117)

According to the assumed relations between n0, a and ρc, sometimes slightly deviation prefactors in (8.117) are used.

For a concentrated line source of length L, the pulse energy ε is distributed by the two-dimensional radial heat conduction according to

$$ T(r,t) = T_{0} + \frac{\varepsilon /L}{4\pi \,\rho c}\frac{1}{a\,t}e^{{ - \frac{{r^{2} }}{4at}}} $$
(8.118)

with lth = √<r2> = 2 (a t)1/2.

The thermal activated processes are now concentrated in a cylindrical environment with radius r(t) = lth(t) = 2 (a · t)1/2 and volume V(t) = π r2(t)·L. Inside the cylinder, a homogeneous temperature T(t) = T(r(t), t) is assumed. The number Nd of displacements is then given by [17, 74]:

$$ N_{d} \approx n_{0} \,f_{0} \int\limits_{0}^{{t_{d} }} {dt\,V_{d} \left( t \right)} = n_{0} \,f_{0} 2\pi \,L\,a\left( {t_{d} } \right)^{2} $$
(8.119)

The upper bound td is given by the condition kT(td) = q:

$$ t_{d} = \frac{1}{4\pi \,a}\frac{k\,\varepsilon }{q\,\rho c\,L} $$
(8.120)

leading to

$$ N_{d} \approx 0.040\frac{d}{L}\left( {\frac{\varepsilon }{q}} \right)^{2} $$
(8.121)

With the approximations n0 ≈ 1/d3, a ≈ f0 d2/3 and ρc ≈ 3 nk = 3 k/d3, (8.121) transforms into

$$ N_{d} \approx 0.013\frac{d}{L}\left( {\frac{\varepsilon }{q}} \right)^{2} $$
(8.122)

1.6 E6 Surface Force on Point Defects (for Sect. 8.4)

According to the continuum theory of lattice defects, an isotropic interstitial with an extra volume ΔV may be described by a spherical displacement dipole, characterized by the tensor ΔV/3 · Ι (Ι = unit tensor). Apart from the different tensorial nature, there is a strong correspondence to the electric dipole in electrostatics with the equivalence of ΔV/3 with the dipole moment p. The force Fx on an electric dipole (in x direction) is determined by the field gradient: Fx = p · dEx/dx. The modification of the electric field of a dipole by a free surface in the distance d is given by the field of a “mirror dipole” beyond the surface. Its field is proportional to p/x3, leading to

$$ \text{F}_{\text{x}} \sim \text{p}^{2} /\text{d}^{4} $$
(8.123)

The analog in continuum mechanics amounts to

$$ F_{x} = \frac{G}{12\pi }\frac{{(1 + v)^{2} }}{1 - v}\frac{{(\Delta V)^{2} }}{{d^{4} }} $$
(8.124)

With G = shear modulus and ν = Poisson modulus [96].

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schultrich, B. (2018). Growth of ta-C Films. In: Tetrahedrally Bonded Amorphous Carbon Films I. Springer Series in Materials Science, vol 263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55927-7_8

Download citation

Publish with us

Policies and ethics