Skip to main content

Nutrition and Hydration for Handball

  • Chapter
  • First Online:
Handball Sports Medicine

Abstract

Handball players face a variety of nutritional challenges during the competitive season. Although there has been an increase in nutrition research and exercise over the last decade, nutrition remains a largely unknown area in sports such as handball. There is little information on the nutritional habits of handball players at any level of the game. This updated document performs a rigorous, systematic, and evidence-based analysis of nutrition and specific literature with current scientific data related to energy needs, nutrient requirements, and hydration during training as well as competition on athletes in team sports, particularly among handball players. Energy and macronutrient needs, especially carbohydrates and proteins, must be met during periods of high physical activity to maintain body weight, replenish glycogen stores, and provide adequate protein to build and repair tissue. Fat intake should be sufficient to supply essential fatty acids and fat-soluble vitamins and to contribute energy for weight maintenance. Micronutrients play an important role in energy production, hemoglobin synthesis, and the maintenance of bone health, adequate immune function, and protecting the body against oxidative damage. Due to the absence of specific micronutrient recommendations in team sports like handball, the consumption of unbalanced diets with low micronutrient density may be insufficient to cover the players’ increased needs. Athletes should be well hydrated before exercise and drink enough liquids during and after exercise to balance fluid loss. Sports drinks containing carbohydrates and electrolytes can be consumed before, during, and after exercise to help maintain blood glucose concentration, provide fuel for muscles, and decrease the risk of dehydration and hyponatremia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas DT, Erdman KA, Burke LM. Position of the academy of nutrition and dietetics, dietitians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. J Acad Nutr Diet. 2016;116:501–28. https://doi.org/10.1016/j.jand.2015.12.006.

    Article  PubMed  Google Scholar 

  2. Rodriguez NR, Di Marco NM, Langley S. American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc. 2009;41:709–31. https://doi.org/10.1249/MSS.0b013e31890eb86.

    Article  CAS  PubMed  Google Scholar 

  3. Kreider RB, Wilborn CD, Taylor L, et al. ISSN exercise & sport nutrition review: research & recommendations. J Int Soc Sports Nutr. 2010;7:7. https://doi.org/10.1186/1550-2783-7-7.

    Article  CAS  PubMed Central  Google Scholar 

  4. Burke LM, Meyer NL, Pearce J. National Nutritional Programs for the 2012 London Olympic Games: a systematic approach by three different countries. Nestle Nutr Inst Workshop Ser. 2013;76:103–20. https://doi.org/10.1159/000350263.

    Article  PubMed  Google Scholar 

  5. Steinmuller PL, Kruskall LJ, Karpinski CA, et al. Academy of nutrition and dietetics: revised 2014 standards of practice and standards of professional performance for registered dietitian nutritionists (competent, proficient, and expert) in sports nutrition and dietetics. J Acad Nutr Diet. 2014;114:631–641.e43. https://doi.org/10.1016/j.jand.2013.12.021.

    Article  PubMed  Google Scholar 

  6. Academy Quality Management Committee and Scope of Practice Subcommittee of Quality Management Committee. Academy of nutrition and dietetics: scope of practice for the registered dietitian. J Acad Nutr Diet. 2013;113:S17–28. https://doi.org/10.1016/j.jand.2012.12.008.

    Article  Google Scholar 

  7. Silva AS, Coeli Seabra Marques R, DE Azevedo LS, et al. Physiological and nutritional profile of elite female beach handball players from Brazil. J Sports Med Phys Fitness. 2016;56:503–9.

    PubMed  Google Scholar 

  8. Sporis G, Vuleta D, Vuleta D, Milanović D. Fitness profiling in handball: physical and physiological characteristics of elite players. Coll Antropol. 2010;34:1009–14.

    PubMed  Google Scholar 

  9. Póvoas SC, Ascensão AA, Magalhães J, et al. Physiological demands of elite team handball with special reference to playing position. J Strength Cond Res. 2014;28:430–42.

    Article  PubMed  Google Scholar 

  10. Karcher C, Buchheit M. On-court demands of elite handball, with special reference to playing positions. Sports Med. 2014;44:797–814. https://doi.org/10.1007/s40279-014-0164-z.

    Article  PubMed  Google Scholar 

  11. Michalsik LB, Madsen K, Aagaard P. Technical match characteristics and influence of body anthropometry on playing performance in male elite team handball. J Strength Cond Res. 2013;29:416–28.

    Article  Google Scholar 

  12. Mougios V. Exercise biochemistry. In: Hum.-Kinet. 2006. http://www.humankinetics.com/products/all-products/exercise-biochemistry. Accessed 8 Jul 2017.

  13. Póvoas SCA, Ascensão AAMR, Magalhães J, et al. Analysis of fatigue development during elite male handball matches. J Strength Cond Res. 2014;28:2640–8. https://doi.org/10.1519/JSC.0000000000000424.

    Article  PubMed  Google Scholar 

  14. Michalsik LB, Aagaard P, Madsen K. Locomotion characteristics and match-induced impairments in physical performance in male elite team handball players. Int J Sports Med. 2013;34:590–9. https://doi.org/10.1055/s-0032-1329989.

    Article  CAS  PubMed  Google Scholar 

  15. Holway FE, Spriet LL. Sport-specific nutrition: practical strategies for team sports. J Sports Sci. 2011;29:S115–25. https://doi.org/10.1080/02640414.2011.605459.

    Article  PubMed  Google Scholar 

  16. Massuça LM, Fragoso I, Teles J. Attributes of top elite team-handball players. J Strength Cond Res. 2014;28:178–86. https://doi.org/10.1519/JSC.0b013e318295d50e.

    Article  PubMed  Google Scholar 

  17. Ziv G, Lidor R. Physical characteristics, physiological attributes, and on-court performances of handball players: a review. Eur J Sport Sci. 2009;9:375–86. https://doi.org/10.1080/17461390903038470.

    Article  Google Scholar 

  18. Gorostiaga EM, Granados C, Ibáñez J, Izquierdo M. Differences in physical fitness and throwing velocity among elite and amateur male handball players. Int J Sports Med. 2005;26:225–32. https://doi.org/10.1055/s-2004-820974.

    Article  CAS  PubMed  Google Scholar 

  19. Bon M, Pori P, Sibila M. Position-related differences in selected morphological body characteristics of top-level female handball players. Coll Antropol. 2015;39:631–9.

    PubMed  Google Scholar 

  20. Šibila M, Pori P. Position-related differences in selected morphological body characteristics of top-level handball players. Coll Antropol. 2009;33:1079–86.

    PubMed  Google Scholar 

  21. Ghobadi H, Rajabi H, Farzad B, et al. Anthropometry of world-class elite handball players according to the playing position: reports from men’s handball world championship 2013. J Hum Kinet. 2013;39:213–20. https://doi.org/10.2478/hukin-2013-0084.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Milanese C, Piscitelli F, Lampis C, Zancanaro C. Anthropometry and body composition of female handball players according to competitive level or the playing position. J Sports Sci. 2011;29:1301–9. https://doi.org/10.1080/02640414.2011.591419.

    Article  PubMed  Google Scholar 

  23. Deakin V, Kerr D, Boushey C, et al. Measuring nutritional status of athletes: clinical and research perspectives. Clin Sports Nutr. 2015:27–53.

    Google Scholar 

  24. McArdle WD, Katch FI, Katch VL. Exercise physiology: nutrition, energy, and human performance. Philadelphia: Lippincott Williams & Wilkins; 2010.

    Google Scholar 

  25. Michalsik LB, Aagaard P, Madsen K. Technical activity profile and influence of body anthropometry on playing performance in female elite team handball. J Strength Cond Res. 2015;29:1126–38. https://doi.org/10.1519/JSC.0000000000000735.

    Article  PubMed  Google Scholar 

  26. Cunningham JJ. A reanalysis of the factors influencing basal metabolic rate in normal adults. Am J Clin Nutr. 1980;33:2372–4.

    Article  CAS  PubMed  Google Scholar 

  27. Harris JA, Benedict FG. A biometric study of human basal metabolism. Proc Natl Acad Sci U S A. 1918;4:370–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ainsworth BE, Haskell WL, Whitt MC, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32:S498–504.

    Article  CAS  PubMed  Google Scholar 

  29. Molina-López J, Molina JM, Chirosa LJ, et al. Implementation of a nutrition education program in a handball team; consequences on nutritional status. Nutr Hosp. 2013;28:1065–76.

    PubMed  Google Scholar 

  30. Wardenaar F, Brinkmans N, Ceelen I, et al. Macronutrient intakes in 553 dutch elite and sub-elite endurance, team, and strength athletes: does intake differ between sport disciplines? Forum Nutr. 2017;9(2):119. https://doi.org/10.3390/nu9020119.

    Article  CAS  Google Scholar 

  31. Silva AM, Matias CN, Santos DA, et al. Energy balance over one athletic season. Med Sci Sports Exerc. 2017;49(8):1724–33. https://doi.org/10.1249/MSS.0000000000001280.

    Article  PubMed  Google Scholar 

  32. Trabulsi J, Troiano RP, Subar AF, et al. Precision of the doubly labeled water method in a large-scale application: evaluation of a streamlined-dosing protocol in the Observing Protein and Energy Nutrition (OPEN) study. Eur J Clin Nutr. 2003;57:1370–7. https://doi.org/10.1038/sj.ejcn.1601698.

    Article  CAS  PubMed  Google Scholar 

  33. Molina-López J, Molina JM, Chirosa LJ, et al. Effect of folic acid supplementation on homocysteine concentration and association with training in handball players. J Int Soc Sports Nutr. 2013;10:10. https://doi.org/10.1186/1550-2783-10-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Molina-López J, Molina JM, Chirosa LJ, et al. Association between erythrocyte concentrations of magnesium and zinc in high-performance handball players after dietary magnesium supplementation. Magnes Res. 2012;25:79–88.

    PubMed  Google Scholar 

  35. Burke LM, Loucks AB, Broad N. Energy and carbohydrate for training and recovery. J Sports Sci. 2006;24:675–85. https://doi.org/10.1080/02640410500482602.

    Article  PubMed  Google Scholar 

  36. Phillips SM, Van Loon LJC. Dietary protein for athletes: from requirements to optimum adaptation. J Sports Sci. 2011;29(Suppl 1):S29–38. https://doi.org/10.1080/02640414.2011.619204.

    Article  PubMed  Google Scholar 

  37. Maughan RJ, Shirreffs SM. Nutrition for sports performance: issues and opportunities. Proc Nutr Soc. 2012;71(1):112–9. https://doi.org/10.1017/S0029665111003211.

    Article  CAS  PubMed  Google Scholar 

  38. Heaney S, O’Connor H, Michael S, et al. Nutrition knowledge in athletes: a systematic review. Int J Sport Nutr Exerc Metab. 2011;21:248–61.

    Article  PubMed  Google Scholar 

  39. Burke LM. Fueling strategies to optimize performance: training high or training low? Scand J Med Sci Sports. 2010;20(Suppl 2):48–58. https://doi.org/10.1111/j.1600-0838.2010.01185.x.

    Article  PubMed  Google Scholar 

  40. Spriet LL. New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports Med. 2014;44:87–96. https://doi.org/10.1007/s40279-014-0154-1.

    Article  PubMed Central  Google Scholar 

  41. Burke LM, Hawley JA, Wong SHS, Jeukendrup AE. Carbohydrates for training and competition. J Sports Sci. 2011;29(Suppl 1):S17–27. https://doi.org/10.1080/02640414.2011.585473.

    Article  PubMed  Google Scholar 

  42. Russell M, West DJ, Harper LD, et al. Half-time strategies to enhance second-half performance in team-sports players: a review and recommendations. Sports Med. 2015;45:353–64. https://doi.org/10.1007/s40279-014-0297-0.

    Article  PubMed  Google Scholar 

  43. Phillips SM. Dietary protein requirements and adaptive advantages in athletes. Br J Nutr. 2012;108(Suppl 2):S158–67. https://doi.org/10.1017/S0007114512002516.

    Article  CAS  PubMed  Google Scholar 

  44. Chaouachi A, Brughelli M, Levin G, et al. Anthropometric, physiological and performance characteristics of elite team-handball players. J Sports Sci. 2009;27:151–7. https://doi.org/10.1080/02640410802448731.

    Article  PubMed  Google Scholar 

  45. Moore DR, Del Bel NC, Nizi KI, et al. Resistance training reduces fasted- and fed-state leucine turnover and increases dietary nitrogen retention in previously untrained young men. J Nutr. 2007;137:985–91.

    Article  CAS  PubMed  Google Scholar 

  46. Hartman JW, Moore DR, Phillips SM. Resistance training reduces whole-body protein turnover and improves net protein retention in untrained young males. Appl Physiol Nutr Metab. 2006;31:557–64. https://doi.org/10.1139/h06-031.

    Article  CAS  PubMed  Google Scholar 

  47. Heaney S, O’Connor H, Gifford J, Naughton G. Comparison of strategies for assessing nutritional adequacy in elite female athletes’ dietary intake. Int J Sport Nutr Exerc Metab. 2010;20:245–56.

    Article  CAS  PubMed  Google Scholar 

  48. Institute of Medicine (U.S.), Institute of Medicine (U.S.). Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, DC: National Academies Press; 2005.

    Google Scholar 

  49. Vessby B. Dietary fat, fatty acid composition in plasma and the metabolic syndrome. Curr Opin Lipidol. 2003;14:15–9. https://doi.org/10.1097/01.mol.0000052859.26236.5f.

    Article  CAS  PubMed  Google Scholar 

  50. Hu FB, Manson JE, Willett WC. Types of dietary fat and risk of coronary heart disease: a critical review. J Am Coll Nutr. 2001;20:5–19.

    Article  PubMed  Google Scholar 

  51. Helge JW, Richter EA, Kiens B. Interaction of training and diet on metabolism and endurance during exercise in man. J Physiol. 1996;492:293–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Muoio DM, Leddy JJ, Horvath PJ, et al. Effect of dietary fat on metabolic adjustments to maximal VO2 and endurance in runners. Med Sci Sports Exerc. 1994;26:81–8.

    Article  CAS  PubMed  Google Scholar 

  53. WHO. Fats and fatty acids in human nutrition. In: WHO. http://www.who.int/nutrition/topics/FFA_human_nutrition/en/. Accessed 19 Oct 2017.

  54. Volpe SL. Micronutrient requirements for athletes. Clin Sports Med. 2007;26:119–30. https://doi.org/10.1016/j.csm.2006.11.009.

    Article  PubMed  Google Scholar 

  55. Woolf K, Manore MM. B-vitamins and exercise: does exercise alter requirements? Int J Sport Nutr Exerc Metab. 2006;16:453–84.

    Article  CAS  PubMed  Google Scholar 

  56. Driskell J. Sports nutrition: vitamins and trace elements. 2nd ed. Boca Raton: CRC; 2005. https://www.crcpress.com/Sports-Nutrition-Vitamins-and-Trace-Elements-Second-Edition/Wolinsky-Driskell/p/book/9780849330223. Accessed 9 Jul 2017.

    Google Scholar 

  57. Institute of Medicine. Dietary reference intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. 1998. https://doi.org/10.17226/6015.

  58. Joubert LM, Manore MM. The role of physical activity level and B-vitamin status on blood homocysteine levels. Med Sci Sports Exerc. 2008;40:1923–31. https://doi.org/10.1249/MSS.0b013e31817f36f9.

    Article  CAS  PubMed  Google Scholar 

  59. Herrmann M, Obeid R, Scharhag J, et al. Altered vitamin B12 status in recreational endurance athletes. Int J Sport Nutr Exerc Metab. 2005;15:433–41.

    Article  CAS  PubMed  Google Scholar 

  60. Unt E, Zilmer K, Mägi A, et al. Homocysteine status in former top-level male athletes: possible effect of physical activity and physical fitness. Scand J Med Sci Sports. 2008;18:360–6. https://doi.org/10.1111/j.1600-0838.2007.00674.x.

    Article  CAS  PubMed  Google Scholar 

  61. Lun V, Erdman KA, Reimer RA. Evaluation of nutritional intake in Canadian high-performance athletes. Clin J Sport Med. 2009;19:405–11. https://doi.org/10.1097/JSM.0b013e3181b5413b.

    Article  PubMed  Google Scholar 

  62. Lukaski HC. Vitamin and mineral status: effects on physical performance. Nutrition. 2004;20:632–44. https://doi.org/10.1016/j.nut.2004.04.001.

    Article  CAS  PubMed  Google Scholar 

  63. Neubauer O, Yfanti C. Antioxidants in athlete’s basic nutrition: considerations towards a guideline for the intake of vitamin C and vitamin E. Antioxid Sport Nutr. 2015.

    Google Scholar 

  64. Margaritis I, Rousseau AS. Does physical exercise modify antioxidant requirements? Nutr Res Rev. 2008;21:3–12. https://doi.org/10.1017/S0954422408018076.

    Article  CAS  PubMed  Google Scholar 

  65. Levine M, Wang Y, Padayatty SJ, Morrow J. A new recommended dietary allowance of vitamin C for healthy young women. Proc Natl Acad Sci U S A. 2001;98:9842–6. https://doi.org/10.1073/pnas.171318198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Neubauer O, Reichhold S, Nics L, et al. Antioxidant responses to an acute ultra-endurance exercise: impact on DNA stability and indications for an increased need for nutritive antioxidants in the early recovery phase. Br J Nutr. 2010;104:1129–38. https://doi.org/10.1017/S0007114510001856.

    Article  CAS  PubMed  Google Scholar 

  67. Nikolaidis MG, Jamurtas AZ. Blood as a reactive species generator and redox status regulator during exercise. Arch Biochem Biophys. 2009;490:77–84. https://doi.org/10.1016/j.abb.2009.08.015.

    Article  CAS  PubMed  Google Scholar 

  68. Paolini M, Pozzetti L, Pedulli GF, et al. The nature of prooxidant activity of vitamin C. Life Sci. 1999;64:PL 273–8.

    Article  CAS  Google Scholar 

  69. Iglesias-Gutiérrez E, García-Rovés PM, Rodríguez C, et al. Food habits and nutritional status assessment of adolescent soccer players. A necessary and accurate approach. Can J Appl Physiol. 2005;30:18–32.

    Article  PubMed  Google Scholar 

  70. Burkhart SJ, Pelly FE. Dietary intake of athletes seeking nutrition advice at a major international competition. Forum Nutr. 2016;8(10):638. https://doi.org/10.3390/nu8100638.

    Article  CAS  Google Scholar 

  71. Rousseau A-S, Hininger I, Palazzetti S, et al. Antioxidant vitamin status in high exposure to oxidative stress in competitive athletes. Br J Nutr. 2004;92:461–8. https://doi.org/10.1079/BJN20041222.

    Article  CAS  PubMed  Google Scholar 

  72. Palazzetti S, Rousseau A-S, Richard M-J, et al. Antioxidant supplementation preserves antioxidant response in physical training and low antioxidant intake. Br J Nutr. 2004;91:91–100.

    Article  CAS  PubMed  Google Scholar 

  73. Morrison D, Hughes J, Della Gatta PA, et al. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans. Free Radic Biol Med. 2015;89:852–62. https://doi.org/10.1016/j.freeradbiomed.2015.10.412.

    Article  CAS  PubMed  Google Scholar 

  74. Chen J. Vitamins: effects of exercise on requirements. In: Jughan R, editor. Nutrition in sport. Hoboken: Blackwell Science; 2000. p. 281–91.

    Chapter  Google Scholar 

  75. Izzicupo P, Ghinassi B, D’Amico MA, et al. Vitamin a decreases after a maximal incremental stress test in non-professional male runners with low aerobic performance. J Biol Regul Homeost Agents. 2016;30:1223–8.

    CAS  PubMed  Google Scholar 

  76. Gleeson M. Immunological aspects of sport nutrition. Immunol Cell Biol. 2016;94:117–23. https://doi.org/10.1038/icb.2015.109.

    Article  CAS  PubMed  Google Scholar 

  77. Shaw G, Lee-Barthel A, Ross ML, et al. Vitamin C–enriched gelatin supplementation before intermittent activity augments collagen synthesis. Am J Clin Nutr. 2017;105:136–43. https://doi.org/10.3945/ajcn.116.138594.

    Article  CAS  PubMed  Google Scholar 

  78. Gross M, Baum O. Supplemental antioxidants and adaptation to physical training. Antioxid Sport Nutr. 2015.

    Google Scholar 

  79. Powers SK, DeRuisseau KC, Quindry J, Hamilton KL. Dietary antioxidants and exercise. J Sports Sci. 2004;22:81–94. https://doi.org/10.1080/0264041031000140563.

    Article  PubMed  Google Scholar 

  80. Bonina FP, Puglia C, Cimino F, et al. Oxidative stress in handball players: effect of supplementation with a red orange extract. Nutr Res. 2005;25:917–24. https://doi.org/10.1016/j.nutres.2005.09.008.

    Article  CAS  Google Scholar 

  81. Marin DP, dos Santos Rde CM, Bolin AP, et al. Cytokines and oxidative stress status following a handball game in elite male players. Oxidative Med Cell Longev. 2011;2011:804873. https://doi.org/10.1155/2011/804873.

    Article  CAS  Google Scholar 

  82. Allison RJ, Close GL, Farooq A, et al. Severely vitamin D-deficient athletes present smaller hearts than sufficient athletes. Eur J Prev Cardiol. 2015;22:535–42. https://doi.org/10.1177/2047487313518473.

    Article  PubMed  Google Scholar 

  83. Farrokhyar F, Tabasinejad R, Dao D, et al. Prevalence of vitamin D inadequacy in athletes: a systematic-review and meta-analysis. Sports Med. 2015;45:365–78. https://doi.org/10.1007/s40279-014-0267-6.

    Article  PubMed  Google Scholar 

  84. Krzywanski J, Mikulski T, Krysztofiak H, et al. Seasonal vitamin D status in polish elite athletes in relation to sun exposure and oral supplementation. PLoS One. 2016;11(10):e0164395. https://doi.org/10.1371/journal.pone.0164395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Grams L, Garrido G, Villacieros J, Ferro A. Marginal micronutrient intake in high-performance male wheelchair basketball players: a dietary evaluation and the effects of nutritional advice. PLoS One. 2016;11(7):e0157931. https://doi.org/10.1371/journal.pone.0157931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. González-Haro C, Soria M, López-Colón JL, et al. Plasma trace elements levels are not altered by submaximal exercise intensities in well-trained endurance euhydrated athletes. J Trace Elem Med Biol. 2011;25(Suppl 1):S54–8. https://doi.org/10.1016/j.jtemb.2010.10.010.

    Article  CAS  PubMed  Google Scholar 

  87. Santos DA, Matias CN, Monteiro CP, et al. Magnesium intake is associated with strength performance in elite basketball, handball and volleyball players. Magnes Res. 2011;24:215–9. https://doi.org/10.1684/mrh.2011.0290.

    Article  CAS  PubMed  Google Scholar 

  88. Clarke AC, Anson JM, Dziedzic CE, et al. Iron monitoring of male and female rugby sevens players over an international season. J Sports Med Phys Fitness. 2017. https://doi.org/10.23736/S0022-4707.17.07363-7.

  89. American College of Sports Medicine, Sawka MN, Burke LM, et al. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39:377–90. https://doi.org/10.1249/mss.0b013e31802ca597.

    Article  Google Scholar 

  90. Nuccio RP, Barnes KA, Carter JM, Baker LB. Fluid balance in team sport athletes and the effect of hypohydration on cognitive, technical, and physical performance. Sports Med. 2017;47:1951–82. https://doi.org/10.1007/s40279-017-0738-7.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Savoie F-A, Kenefick RW, Ely BR, et al. Effect of hypohydration on muscle endurance, strength, anaerobic power and capacity and vertical jumping ability: a meta-analysis. Sports Med. 2015;45:1207–27. https://doi.org/10.1007/s40279-015-0349-0.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Molina-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ESSKA

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Molina-López, J., Planells, E. (2018). Nutrition and Hydration for Handball. In: Laver, L., Landreau, P., Seil, R., Popovic, N. (eds) Handball Sports Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55892-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55892-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55891-1

  • Online ISBN: 978-3-662-55892-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics