Skip to main content

Biomechanical Aspects in Handball: Lower Limb

  • Chapter
  • First Online:
Handball Sports Medicine

Abstract

Biomechanics is the study of movement and loading of biomechanical structures, in this case in the handball player. In other words, by using biomechanical measures, knowledge is obtained about movements and coordination of movements, i.e., technique, and the forces exerted by—or applied upon—the body during sports-specific movements. Biomechanical methods can be used to investigate performance parameters like throwing technique or jumping performance, and detailed information about the contribution of the different joints can be obtained. In injury prevention, information about loading of joints and soft tissue may be estimated during high-risk sports situations, and as such biomechanical risk factors can be identified. To counteract and control the external forces applied to the body during handball play, the muscles need to be adequately activated. During a high-risk ACL injury movement such as side cutting where numerous lower limb muscles are active at the same time, electromyography (EMG) can be used to measure neuromuscular activity and provide a proxy measure of muscle force output.

The following chapter will guide the reader through examples of biomechanical and neuromuscular evaluations of performance and injury situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Massuca L, Branco B, Miarka B, Fragoso I. Physical fitness attributes of team-handball players are related to playing position and performance level. Asian J Sports Med. 2015;6:e24712.

    Article  Google Scholar 

  2. Schwesig R, Hermassi S, Fieseler G, Irlenbusch L, Noack F, Delank K-S, Shephard RJ, Chelly M-S. Anthropometric and physical performance characteristics of professional handball players: influence of playing position. J Sports Med Phys Fitness. 2017;57:1471–8.

    PubMed  Google Scholar 

  3. Chelly MS, Hermassi S, Aouadi R, Shephard RJ. Effects of 8-week in-season plyometric training on upper and lower limb performance of elite adolescent handball players. J Strength Cond Res. 2014;28:1401–10.

    Article  Google Scholar 

  4. Hermassi S, Chelly MS, Fieseler G, Bartels T, Schulze S, Delank K-S, Shephard RJ, Schwesig R. Effects of in-season explosive strength training on maximal leg strength, jumping, sprinting, and intermittent aerobic performance in male handball athletes. Sportverletz Sportschaden. 2017;31:167–73.

    Article  Google Scholar 

  5. Seil R, Rupp S, Tempelhof S, Kohn D. Sports injuries in team handball. A one-year prospective study of sixteen men’s senior teams of a superior nonprofessional level. Am J Sports Med. 1998;26:681–7.

    Article  CAS  Google Scholar 

  6. Olsen OE, Myklebust G, Engebretsen L, Bahr R. Injury pattern in youth team handball: a comparison of two prospective registration methods. Scand J Med Sci Sports. 2006;16:426–32.

    Article  Google Scholar 

  7. Wedderkopp N, Kaltoft M, Lundgaard B, Rosendahl M, Froberg K. Injuries in young female players in European team handball. Scand J Med Sci Sports. 1997;7:342–7.

    Article  CAS  Google Scholar 

  8. Moller M, Attermann J, Myklebust G, Wedderkopp N. Injury risk in Danish youth and senior elite handball using a new SMS text messages approach. Br J Sports Med. 2012;46:531–7.

    Article  Google Scholar 

  9. Dienst M, Burks RT, Greis PE. Anatomy and biomechanics of the anterior cruciate ligament. Orthop Clin North Am. 2002;33:605–20, v.

    Article  Google Scholar 

  10. Fleming BC, Renstrom PA, Beynnon BD, Engstrom B, Peura GD, Badger GJ, Johnson RJ. The effect of weightbearing and external loading on anterior cruciate ligament strain. J Biomech. 2001;34:163–70.

    Article  CAS  Google Scholar 

  11. Ebstrup JF, Bojsen-Moller F. Anterior cruciate ligament injury in indoor ball games. Scand J Med Sci Sports. 2000;10:114–6.

    Article  CAS  Google Scholar 

  12. Olsen OE, Myklebust G, Engebretsen L, Bahr R. Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med. 2004;32:1002–12.

    Article  Google Scholar 

  13. Torzilli PA, Deng X, Warren RF. The effect of joint-compressive load and quadriceps muscle force on knee motion in the intact and anterior cruciate ligament-sectioned knee. Am J Sports Med. 1994;22:105–12.

    Article  CAS  Google Scholar 

  14. Myklebust G, Maehlum S, Holm I, Bahr R. A prospective cohort study of anterior cruciate ligament injuries in elite Norwegian team handball. Scand J Med Sci Sports. 1998;8:149–53.

    Article  CAS  Google Scholar 

  15. Hewett TE, Myer GD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG, Van den Bogert AJ, Paterno MV, Succop P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33:492–501.

    Article  Google Scholar 

  16. Krosshaug T, Steffen K, Kristianslund E, Nilstad A, Mok K-M, Myklebust G, Andersen TE, Holme I, Engebretsen L, Bahr R. The vertical drop jump is a poor screening test for ACL injuries in female elite soccer and handball players: a prospective cohort study of 710 athletes. Am J Sports Med. 2016;44:874–83.

    Article  Google Scholar 

  17. Kristianslund E, Krosshaug T. Comparison of drop jumps and sport-specific sidestep cutting: implications for anterior cruciate ligament injury risk screening. Am J Sports Med. 2013;41:684–8.

    Article  Google Scholar 

  18. Krosshaug T, Nakamae A, Boden BP, Engebretsen L, Smith G, Slauterbeck JR, Hewett TE, Bahr R. Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med. 2007;35:359–67.

    Article  Google Scholar 

  19. Bencke J, Curtis D, Krogshede C, Jensen LK, Bandholm T, Zebis MK. Biomechanical evaluation of the side-cutting manoeuvre associated with ACL injury in young female handball players. Knee Surg Sports Traumatol Arthrosc. 2013;21:1876–81.

    Article  Google Scholar 

  20. Steffen K, Nilstad A, Kristianslund EK, Myklebust G, Bahr R, Krosshaug T. Association between lower extremity muscle strength and noncontact ACL injuries. Med Sci Sports Exerc. 2016;48:2082–9.

    Article  Google Scholar 

  21. Leetun DT, Ireland ML, Willson JD, Ballantyne BT, Davis IM. Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc. 2004;36:926–34.

    Article  Google Scholar 

  22. Khayambashi K, Ghoddosi N, Straub RK, Powers CM. Hip muscle strength predicts noncontact anterior cruciate ligament injury in male and female athletes: a prospective study. Am J Sports Med. 2016;44:355–61.

    Article  Google Scholar 

  23. Kristianslund E, Faul O, Bahr R, Myklebust G, Krosshaug T. Sidestep cutting technique and knee abduction loading: implications for ACL prevention exercises. Br J Sports Med. 2014;48:779–83.

    Article  Google Scholar 

  24. Dempsey AR, Lloyd DG, Elliott BC, Steele JR, Munro BJ, Russo KA. The effect of technique change on knee loads during sidestep cutting. Med Sci Sports Exerc. 2007;39:1765–73.

    Article  Google Scholar 

  25. Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J. The effects of core proprioception on knee injury: a prospective biomechanical-epidemiological study. Am J Sports Med. 2007.

    Google Scholar 

  26. Weiss K, Whatman C. Biomechanics associated with patellofemoral pain and ACL injuries in sports. Sports Med. 2015;45:1325–37.

    Article  Google Scholar 

  27. Malinzak RA, Colby SM, Kirkendall DT, Yu B, Garrett WE. A comparison of knee joint motion patterns between men and women in selected athletic tasks. Clin Biomech (Bristol Avon). 2001;16:438–45.

    Article  CAS  Google Scholar 

  28. Sigward SM, Powers CM. The influence of gender on knee kinematics, kinetics and muscle activation patterns during side-step cutting. Clin Biomech (Bristol Avon). 2006;21:41–8.

    Article  Google Scholar 

  29. Chappell JD, Creighton RA, Giuliani C, Yu B, Garrett WE. Kinematics and electromyography of landing preparation in vertical stop-jump: risks for noncontact anterior cruciate ligament injury. Am J Sports Med. 2007;35:235–41.

    Article  Google Scholar 

  30. Bencke J, Zebis MK. The influence of gender on neuromuscular pre-activity during side-cutting. J Electromyogr Kinesiol. 2011;21:371–5.

    Article  Google Scholar 

  31. Simonsen EB, Magnusson SP, Bencke J, Naesborg H, Havkrog M, Ebstrup JF, Sorensen H. Can the hamstring muscles protect the anterior cruciate ligament during a side-cutting maneuver? Scand J Med Sci Sports. 2000;10:78–84.

    Article  CAS  Google Scholar 

  32. Zebis MK, Andersen LL, Bencke J, Kjaer M, Aagaard P. Identification of athletes at future risk of anterior cruciate ligament ruptures by neuromuscular screening. Am J Sports Med. 2009;37:1967–73.

    Article  Google Scholar 

  33. Andersen LL, Magnusson SP, Nielsen M, Haleem J, Poulsen K, Aagaard P. Neuromuscular activation in conventional therapeutic exercises and heavy resistance exercises: implications for rehabilitation. Phys Ther. 2006;86:683–97.

    PubMed  Google Scholar 

  34. Zebis MK, Skotte J, Andersen CH, Mortensen P, Petersen HH, Viskaer TC, Jensen TL, Bencke J, Andersen LL. Kettlebell swing targets semitendinosus and supine leg curl targets biceps femoris: an EMG study with rehabilitation implications. Br J Sports Med. 2013;47:1192–8.

    Article  Google Scholar 

  35. Delahunt E, Coughlan GF, Caulfield B, Nightingale EJ, Lin C-WC, Hiller CE. Inclusion criteria when investigating insufficiencies in chronic ankle instability. Med Sci Sports Exerc. 2010;42:2106–21.

    Article  Google Scholar 

  36. Freeman MA. Instability of the foot after injuries to the lateral ligament of the ankle. J Bone Joint Surg Br. 1965;47:669–77.

    Article  CAS  Google Scholar 

  37. Verhagen E, van der Beek A, Twisk J, Bouter L, Bahr R, van Mechelen W. The effect of a proprioceptive balance board training program for the prevention of ankle sprains: a prospective controlled trial. Am J Sports Med. 2004;32:1385–93.

    Article  Google Scholar 

  38. Calatayud J, Borreani S, Colado JC, Flandez J, Page P, Andersen LL. Exercise and ankle sprain injuries: a comprehensive review. Phys Sportsmed. 2014;42:88–93.

    Article  Google Scholar 

  39. Witchalls J, Blanch P, Waddington G, Adams R. Intrinsic functional deficits associated with increased risk of ankle injuries: a systematic review with meta-analysis. Br J Sports Med. 2012;46:515–23.

    Article  Google Scholar 

  40. Suda EY, Amorim CF, Sacco Ide CN. Influence of ankle functional instability on the ankle electromyography during landing after volleyball blocking. J Electromyogr Kinesiol. 2009;19:e84–93.

    Article  Google Scholar 

  41. Strom M, Thorborg K, Bandholm T, Tang L, Zebis M, Nielsen K, Bencke J. Ankle joint control during single-legged balance using common balance training. Int J Sports Phys Ther. 2016;11:388–99.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mette K. Zebis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ESSKA

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zebis, M.K., Bencke, J. (2018). Biomechanical Aspects in Handball: Lower Limb. In: Laver, L., Landreau, P., Seil, R., Popovic, N. (eds) Handball Sports Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55892-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55892-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55891-1

  • Online ISBN: 978-3-662-55892-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics