Skip to main content

5G-Datentransport mit Höchstgeschwindigkeit

Mehr Daten, mehr Tempo, mehr Sicherheit

  • Chapter
Digitalisierung

Zusammenfassung

Die Mobilkommunikation hat seit der weltweiten Verfügbarkeit von mobilen Sprachdiensten und als Grundlage für das mobile Internet unsere Gesellschaft und unsere Art zu kommunizieren nachhaltig verändert. Sie hat eine neue Dimension von Produktivitätssteigerung und Vernetzung von Produktionsund Dienstleistungsprozessen seit der Nutzung des Internets ermöglicht. Die technische Grundlage basiert auf einem tiefgreifenden Verständnis der Zusammenhänge der Funk- und Nachrichtentechnik, angefangen von Radiowellenausbreitung und deren Modellierung über Verfahren der digitalen Signalverarbeitung und eines skalierbaren Systementwurfs für ein zellulares Funksystem mit Mobilitätsunterstützung bis hin zu Methoden der Systembewertung und Systemoptimierung. Das Fraunhofer-Institut für Nachrichtentechnik, Heinrich- Hertz-Institut (HHI) arbeitet seit 20 Jahren im Bereich der Mobilfunkkommunikation und hat eine Vielzahl von wichtigen Beiträgen zur dritten, vierten und fünften Generation geleistet. Neben wissenschaftlichen Beiträgen und zahlreichen erstmaligen Demonstrationen zu Schlüsseltechnologie-Komponenten trägt das Institut auch aktiv zur 3GPP-Standardisierung bei.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Quellen und Literatur

  1. NGMN 5G White Paper, https://www.ngmn.org/uploads/media/NGMN_5G_White_Paper_V1_0.pdf

  2. https://www.ericsson.com/research-blog/lte/release-14-the-start-of-5gstandardization

  3. G. Fodor et al., „An Overview of Massive MIMO Technology Components in METIS,“ in IEEE Communications Magazine, vol. 55, no. 6, pp. 155-161, 2017.

    Google Scholar 

  4. One5G, https://5g-ppp.eu/one5g/

  5. MIDRAS: Mikro-Drohnen-Abwehr-System, https://www.hhi.fraunhofer.de/abteilungen/wn/projekte/midras.html

  6. M. Kurras, L. Thiele and G. Caire, „Interference Mitigation and Multiuser Multiplexing with Beam-Steering Antennas“, WSA 2015; 19th International ITG Workshop on Smart Antennas; Proceedings of, pp. 1-5, March. 2015

    Google Scholar 

  7. Millimeter-wave evolution for 5G cellular networks, K Sakaguchi, GK Tran, H Shimodaira, S Nanba, T Sakurai, K Takinami, IEICE Transactions on Communications 98 (3), 388-402

    Google Scholar 

  8. Enabling 5G backhaul and access with millimeter-waves, RJ Weiler, M Peter, W Keusgen, E Calvanese-Strinati, A De Domenico, Networks and Communications (EuCNC), 2014 European Conference on, 1-5

    Google Scholar 

  9. Weiler, Richard J., et al. „Quasi-deterministic millimeter-wave channel models in Mi-WEBA.“ EURASIP Journal on Wireless Communications and Networking 2016.1 (2016): 84.

    Google Scholar 

  10. L. Grobe et al., „High-speed visible light communication systems,“ IEEE Comm. Magazine, pp. 60-66, Dec. 2013.

    Article  Google Scholar 

  11. V. Vucic et al., „513 Mbit/s Visible Light Communications Link Based on DMT-Modulation of a White LED,“ Journal of Lightwave Technology, pp. 3512-3518, December 2010.

    Google Scholar 

  12. D. Schulz et al., „Robust Optical Wireless Link for the Backhaul and Fronthaul of Small Radio Cells,“ IEEE Journal of Lightwave Technology, March 2016.

    Article  Google Scholar 

  13. V. Jungnickel et al., „Software-defined Open Access for flexible and service-oriented 5G deployment,“ IEEE International Conference on Communications Workshops (ICC), pp. 360 - 366, 2016.

    Google Scholar 

  14. J. Fabrega et al., „Demonstration of Adaptive SDN Orchestration: A Real-Time Congestion-Aware Services Provisioning Over OFDM-Based 400G OPS and Flexi-WDM OCS,“ Journal of Lightwave Technology, Volume 35, Issue 3, 2017.

    Google Scholar 

  15. https://www.hhi.fraunhofer.de/presse-medien/nachrichten/2017/hannover-messe-2017-ultraschneller-mobilfunkstandard-5g.html

  16. IC4F Projekt: https://www.ic4f.de

  17. Cognitive Mobile Radio, BMBF Projekt 2012-2015, http://www.comora.de

  18. M. Shafi et. al. „5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment and Practice,“ in IEEE Journal on Selected Areas in Communications, April 2017, DOI:10.1109/jsac.2017.2692307.

    Article  Google Scholar 

  19. M. Kurras, L. Thiele, T. Haustein, W. Lei, and C. Yan, „Full dimension mimo for frequency division duplex under signaling and feedback constraints,“ in Signal Processing Conference (EUSIPCO), 2016 24th European. IEEE, 2016, pp. 1985–1989.

    Google Scholar 

  20. R. Askar, T. Kaiser, B. Schubert, T. Haustein, and W. Keusgen, „Active self-interference cancellation mechanism for full-duplex wireless transceivers,“ in International Conference on Cognitive Radio Oriented Wireless Networks and Communications (Crown-Com), June 2014.

    Google Scholar 

  21. K. Sakaguchi et.al., Where, When, and How mmWave is Used in 5G and Beyond, arXiv preprint arXiv:1704.08131, 2017

  22. ITU-T Technology Watch Report, „The Tactile Internet,“ Aug. 2014.

    Google Scholar 

  23. J. Pilz, M. Mehlhose, T. Wirth, D. Wieruch, B. Holfeld, and T. Haustein, „A Tactile Internet Demonstration: 1ms Ultra Low Delay for Wireless Communications towards 5G,“ in IEEE INFOCOM Live/Video Demonstration, April 2016.

    Google Scholar 

  24. T. Haustein, C. von Helmolt, E. Jorswieck, V. Jungnickel, and V. Pohl, „Performance of MIMO systems with channel inversion,“ in Proc. 55th IEEE Veh. Technol. Conf., vol. 1, Birmingham, AL, May 2002, pp. 35–39.

    Google Scholar 

  25. T. Wirth, M. Mehlhose, J. Pilz, R. Lindstedt, D. Wieruch, B. Holfeld, and T. Haustein, „An Advanced Hardware Platform to Verify 5G Wireless Communication Concepts,“ in Proc. of IEEE VTC-Spring, May 2015.

    Google Scholar 

  26. 3GPP TR 36.881, „Study on Latency Reduction Techniques for LTE,“ June 2016.

    Google Scholar 

  27. R. Askar, B. Schubert, W. Keusgen, and T. Haustein, „Full-Duplex wireless transceiver in presence of I/Q mismatches: Experimentation and estimation algorithm,“ in IEEE GC 2015 Workshop on Emerging Technologies for 5G Wireless Cellular Networks - 4th International (GC’15 - Workshop - ET5G), San Diego, USA, Dec. 2015.

    Google Scholar 

  28. Dommel, J., et al. 5G in space: PHY-layer design for satellite communications using nonorthogonal multi-carrier transmission[C]. Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC), 2014 7th. 2014: Livorno. p. 190-196.

    Google Scholar 

  29. M. D. Mueck, I. Karls, R. Arefi, T. Haustein, and W. Keusgen, „Licensed shared access for wave cellular broadband communications,“ in Proc. Int. Workshop Cognit. Cellular Syst. (CCS), Sep. 2014, pp. 1–5.

    Google Scholar 

  30. M. Mueck et al., „ETSI Reconfigurable Radio Systems: Status and Future Directions on Software Defined Radio and Cognitive Radio Standards,“ IEEE Commun. Mag., vol. 48, Sept. 2010, pp. 78–86.

    Article  Google Scholar 

  31. J. Dommel, P.-P. Knust, L. Thiele, and T. Haustein, „Massive MIMO for interference management in heterogeneous networks,“ in Sensor Array and Multichannel Signal Processing Workshop (SAM), 2014 IEEE 8th, June 2014, pp. 289–292.

    Google Scholar 

  32. T. Frank, A. Klein, and T. Haustein, „A survey on the envelope fluctuations of DFT precoded OFDMA signals,“ in Proc. IEEE ICC, May 2008, pp. 3495–3500.

    Google Scholar 

  33. V. Venkatkumar, T. Wirth, T. Haustein, and E. Schulz, „Relaying in long term evolution: indoor full frequency reuse“, in European Wireless, Aarlborg, Denmark, May 2009.

    Google Scholar 

  34. V. Jungnickel, T. Wirth, M. Schellmann, T. Haustein, and W. Zirwas, „Synchronization of cooperative base stations,“ Proc. IEEE ISWCS ’08, pp. 329 – 334, oct 2008.

    Google Scholar 

  35. V. Jungnickel, L. Thiele, M. Schellmann, T. Wirth, W. Zirwas, T. Haustein, and E. Schulz, „Implementation concepts for distributed cooperative transmission,“ Proc. ACSSC ’08, oct 2008.

    Google Scholar 

  36. L. Thiele, T. Wirth, T. Haustein, V. Jungnickel, E. Schulz, , and W. Zirwas, „A unified feedback scheme for distributed interference management in cellular systems: Benefits and challenges for real-time implementation,“ Proc. EUSIPCO’09, 2009.

    Google Scholar 

  37. M. Schellmann, L. Thiele, T. Haustein, and V. Jungnickel, „Spatial transmission mode switching in multi-user MIMO-OFDM systems with user fairness,“ IEEE Trans. Veh. Technol., vol. 59, no. 1, pp. 235–247, Jan. 2010.

    Article  Google Scholar 

  38. V. Jungnickel, T. Hindelang, T. Haustein, and W. Zirwas. SC-FDMA waveform design, performance, power dynamics and evoluation to MIMO. In IEEE International Conference on Portable Information Devices. Orlando, Florida, March 2007.

    Google Scholar 

  39. V. Jungnickel, V. Krueger, G. Istoc, T. Haustein, and C. von Helmolt, „A MIMO system with reciprocal transceivers for the time-division duplex mode,“ in Proc. IEEE Antennas and Propagation Society Symposium, June 2004, vol. 2, pp. 1267–1270.

    Google Scholar 

  40. T. Wirth, V. Venkatkumar, T. Haustein, E. Schulz, and R. Halfmann, „LTE-Advanced relaying for outdoor range extension,“ in VTC2009-Fall, Anchorage, USA, Sep. 2009.

    Google Scholar 

  41. FP7 European Project 318555 5G NOW (5th Generation Non-Orthogonal Waveforms for Asynchronous Signalling) 2012. [Online]. Available: http://www.5gnow.eu/

  42. G. Wunder et al., “5GNOW: Non-orthogonal, asynchronous waveforms for future mobile applications,“ IEEE Commun. Mag., vol. 52, no. 2, pp. 97_105, Feb. 2014.

    Article  Google Scholar 

  43. R. L. Cavalcante, S. Stanczak, M. Schubert, A. Eisenblaetter, and U. Tuerke, „Toward energy-efficient 5G wireless communications technologies: Tools for decoupling the scaling of networks from the growth of operating power,“ IEEE Signal Process. Mag., vol. 31, no. 6, pp. 24– 34, Nov. 2014.

    Article  Google Scholar 

  44. 5G Automotive Association http://5gaa.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Freund, R. et al. (2018). 5G-Datentransport mit Höchstgeschwindigkeit. In: Neugebauer, R. (eds) Digitalisierung. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55890-4_7

Download citation

Publish with us

Policies and ethics