Skip to main content

Adaptronische Funktionselemente

  • Chapter
  • First Online:
Book cover Adaptronik

Übersicht

Dieses Kapitel zeigt unterschiedliche Bauweisen aktiver Funktionselemente auf. Zwei Abschnitte gehen dazu zunächst auf Piezokomposite ein. Der zweite Abschnitt stellt stellwegvergrößernde Wandler vor. Anschließend werden Bauweisen für Sensorik und Aktorik aus den weiteren im vorangegangenen Kapitel beschriebenen Funktionswerkstoffen vorgestellt. Abschließend geben Arbeiten zu radial-sensorischen PVDF-Fasern einen Einblick in aktuelle Forschung für adaptronische Funktionselemente.

Warum die Menschen so wenig behalten können was sie lesen ist, daß sie so wenig selbst denken.

Georg Christoph Lichtenberg (1742–1799)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    benannt nach Jakob I. Bernoulli, 1654–1705, Schweizer Mathematiker und Physiker

Literatur

  1. E. K. Akdogan, M. Allahverdi, A. Safari, Piezoelectric composites for sensor and actuator applications. IEEE T. Ultrason. Ferr. Freq. Cont. 52(5), 746–775 (2005)

    Article  Google Scholar 

  2. D. Balageas, C.-P. Fritzen, A. Güemes (Hrsg.), Structural Health Monitoring (Wiley-ISTE, London, UK, 2006)

    Google Scholar 

  3. W. Bauhofer, J. Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69(10), 203–205 (2009)

    Article  Google Scholar 

  4. J. Bergman, J. McFee, G. Crane, Pyroelectricity and optical second harmonic generation in polyvinylidene fluoride films. Appl. Phys. Lett. 18(5), 203–205 (1971)

    Article  Google Scholar 

  5. I. Bronstein, K. Semendjajew, Taschenbuch der Mathematik (Verlag Harri Deutsch, Thun, Schweiz, 1979)

    Google Scholar 

  6. F. Capri, D. De Rossi, Contractile folded dielectric elastomer actuators. In Proc. SPIE 6524, Electroactive Polymer Actuators and Devices (EAPAD) (2007)

    Google Scholar 

  7. CEDRAT Technoligies, www.cedrat-technologies.com. APA100M and APA40SM, Tables of Standard Properties of Use and Measurement (2017)

  8. C. R. Farrar, K. Worden, Structural Health Monitoring: A Machine Learning Perspective (John Wiley & Sons, New Jersey, USA, 2012)

    Book  Google Scholar 

  9. B. Glauß, B. Mohr, G. Seide, T. Gries, Multicomponent filaments process for the use as sensors. In The Fiber Society Spring Conference 2016: Textile Innovations Opportunities and Challenges (2016)

    Google Scholar 

  10. B. Glauß, W. Steinmann, S. Walter, M. Beckers, G. Seide, T. Gries, G. Roth, Spinnability and characteristics of polyvinylidene fluoride(PVDF)-based Bi-component fibers with a carbon-nanotube(CNT)-modified polypropylene core for piezoelectric applications. Materials 6(7), 2642–2661 (2013)

    Article  Google Scholar 

  11. T. Gries, D. Veit, Technische Textilien – Vorlesungsskript (Institut für Textiltechnik der RWTH Aachen, Aachen, 2007)

    Google Scholar 

  12. T. Hoffstadt, D. Tepel, J. Maas, Automated roll-to-roll process for the fabrication. In Proceedings of EuroEAP, Bd. 3 (2013)

    Google Scholar 

  13. G. Kovacs, L. Düring, Contractive tension force stack actuator based on soft dielectric EAP. In Proc. SPIE 7287, Electroactive Polymer Actuators and Devices (EAPAD) (2009)

    Google Scholar 

  14. F. Lalande, Z. Chaudhry, C. Rogers, A simplified geometrically nonlinear approach to the analysis of the moonie actuator. IEEE T. Ultrason. Ferr. Freq. Cont. 42(1), 21–27 (1995)

    Article  Google Scholar 

  15. R. Lammering, U. Gabbert, M. Sinapius, T. Schuster, P. Wierach (Hrsg.), Lamb-Wave Based Structural Health Monitoring in Polymer Composites (Springer, Cham, Schweiz 2018)

    Google Scholar 

  16. A. Lund, B. Hagström, Melt spinning of poly(vinylidene fluoride) fibers and the influence of spinning parameters on β-phase crystallinity. J. Appl. Polym. Sci. 116(5), 2685–2693 (2010)

    Google Scholar 

  17. A. Lund, B. Hagström, Melt spinning of β-phase poly(vinylidene fluoride) yarns with and without a conductive core. J. Appl. Polym. Sci. 120(2), 1080–1089 (2011)

    Article  Google Scholar 

  18. K. Nakamura, Y. Wada, Piezoelectricity, pyroelectricity, and the electrostriction constant of poly(vinylidene fluoride). J. Polym. Sci. Part A-2 9(1), 161–173 (1971)

    Article  Google Scholar 

  19. H. S. Nalwa (Hrsg.), Ferroelectric Polymers (Marcel Dekker, Inc, New York, USA 1995)

    Google Scholar 

  20. R. Newnham, D. Skinner, L. Cross. Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 13(5), 525–536 (1978)

    Article  Google Scholar 

  21. Physik Instrumente (PI) GmbH, www.piceramic.de/de. PI-Datenblatt-P-876-20150123 (2014)

  22. Physik Instrumente (PI) GmbH, www.piceramic.de/de. PI-Datenblatt-P-878-20150123 (2014)

  23. Physik Instrumente (PI) GmbH, www.piceramic.de/de. PL112 PL140 – Vollkeramische Biegeaktoren mit großem Hub (2017)

  24. K. S. Ramadan, S. Sameoto, S. Evoy, A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct. 23(3), 033001 (2014)

    Article  Google Scholar 

  25. D. Schawaller, F. Effenberger, Herstellung neuartiger piezoelektrischer Verbundmaterialien. Technical Report AiF-Abschlussbericht 14716 N/1, Denkendorf, Institut für Textilchemie und Chemiefaser (2008)

    Google Scholar 

  26. N. Schedukat, T. Gries, Schmelzspinnen von PVDF-Multifilamenten für neue Anwendungen. In 45th Dornbirn Man-Made Fibers Congress (2006)

    Google Scholar 

  27. G. Seide, S. Walter, W. Steinmann, T. Gries, Piezoelektrische Fasersensorik auf Basis von schmelzgesponnenen PVDF-Filamenten: Grenzen und Möglichkeiten. In Zweites bundesweites Arbeitskreis-Treffen AK Sensorisierung von Verbundwerkstoffen (Berlin, 2010)

    Google Scholar 

  28. Smart Material GmbH, www.smart-material.com/. MFC-V2.3-Web-full-brochure (2017).

  29. W. Steinmann, Elektrisch leitfähige Polymerfasern aus Nanoverbundwerkstoffen. Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen, 2014

    Google Scholar 

  30. D. Tepela, T. Hoffstadt, J. Maas, Automated manufacturing process for DEAP stack-actuators. In Proc. of SPIE 9056, Electroactive Polymer Actuators and Devices (EAPAD) (2014)

    Google Scholar 

  31. S. Walter, N. Schedukat, S. Houis, T. Gries, PVDF Multifilament Yarns: Production, Processing and Applications. In 47th Dornbirn Man-Made Fibers Congress (2008)

    Google Scholar 

  32. S. Walter, W. Steinmann, T. Gries, G. Seide, N. Schedukat, G. Roth, Melt-spun Polyvinyli-Dene-Fluoride fibers of textile fineness production, pro-cessing and properties. Chem. Fibers Int. (26), 49–50 (2010)

    Google Scholar 

  33. S. Walter, W. Steinmann, J. Schütte, G. Seide, T. Gries, G. Roth, P. Wierach, M. Sinapius, Characterisation of piezoelectric PVDF monofilaments. Mater. Technol.: Adv. Perform. Mater. 26(3), 140–145 (2011)

    Article  Google Scholar 

  34. S. E. G. Walter, Entwicklung piezoelektrisch wirksamer Sensorfasern auf Basis von Polyvinylidenfluorid. Dissertation, Rheinisch-Westfälischen Technischen Hochschule Aachen, 2012

    Google Scholar 

  35. T. Wang, J. Herbert, A. Glass (Hrsg.), The Application of Ferroelectric Polymers (Blackie, Glasgow, 1988)

    Google Scholar 

  36. P. Wierach, Entwicklung von Piezokompositen für adaptive Systeme. Dissertation, Technische Universität Carolo-Wilhelmina zu Braunschweig, 2009

    Google Scholar 

  37. W. K. Wilkie, R. G. Bryant, J. W. High, R. L. Fox, R. F. Hellbaum, A. Jalink, B. D. Little, P. H. Mirick, Low-Cost Piezocomposite Actuator for Structural Control Applications. SPIE (2000)

    Google Scholar 

  38. Y. Zhang, Encyclopedia of Structural Health Monitoring, Kapitel Piezoelectric Paint Sensors for Ultrasonics-based Damage Detection. (Wiley, New Jersey, USA, 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Michael Sinapius .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinapius, J.M., Gries, T. (2018). Adaptronische Funktionselemente. In: Adaptronik. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55884-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55884-3_4

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55883-6

  • Online ISBN: 978-3-662-55884-3

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics