Skip to main content

Geological Applications

  • Chapter
  • First Online:

Abstract

This chapter provides a broad overview of geological applications of remote sensing data. First, it reviews the accuracy aspects and the general strategy required for data selection, resolution requirements, data processing etc. Then, the chapter provides numerous examples of applications in various branches of geology – geomorphology, structure, lithological mapping, mineralogical identification, alteration mapping, mineral and oil exploration, groundwater and engineering geological studies, coal mine fire mapping, volcano monitoring, earthquake disaster investigations, soil erosion and environmental applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrams M (2005) Significance of hydrocarbon seepage relative to petroleum generation and entrapment. Mar Pet Geol 22:457–477

    Article  Google Scholar 

  • Abrams MJ, Brown D (1985) Silver Bell, Arizona, porphyry copper test site. The Joint NASA/Geosat Test Case Study, Section 4, Am Assoc Petrol Geol, Tulsa, Oklahoma

    Google Scholar 

  • Abrams MJ, Ashley RP, Rowan LC, Goetz AFH, Kahle AB (1977) Mapping of hydrothermal alteration in the Cuprite Mining District, Nevada, using aircraft scanner images for the spectral region 0.46 to 2.36µm. Geology 5:713–718

    Article  Google Scholar 

  • Abrams MJ, Brown D, Lepley L, Sadowski R (1983) Remote sensing for porphyry copper deposits in south Arizona. Econ Geol 78:591–604

    Article  Google Scholar 

  • Acharya T, Nag SK, Basumallik S (2012) Hydraulic significance of fracture correlated lineaments in Precambrian rocks in Purulia district, West Bengal. J Geol Soc Ind 80:723–730

    Article  Google Scholar 

  • Agarwal RP, Misra VN (1994) Application of remote sensing in petroleum exploration case studies from Northeastern region ofIndia. Ind J Petrol Geol 3(2):45–68

    Google Scholar 

  • Agterberg FP, Bonham-Carter GF (1990) Deriving weights-of-evidence from geosciences contourmaps for prediction of discrete events. In: Proceedings 22nd APCOM symposium, Berlin, Germany, vol 2, pp 381–395

    Google Scholar 

  • Agterberg FP, Bonham-Carter GF, Wright DF (1990) Statistical pattern integration for mineral exploration. In: Gaal G, Merriam DF (eds) Computer applications in resource estimation prediction and assessment for metals and petroleum. Pergamon Press, Oxford, pp 1–21

    Google Scholar 

  • Al Saud M (2010) Mapping potential areas for groundwater storage in Wadi Aurnah Basin, western Arabian Peninsula, using remote sensing and geographic information system techniques. Hydrogeol J 18:1481–1495

    Article  Google Scholar 

  • Allen CR (1975) Geological criteria for evaluating seismicity. Geol Soc Am Bull 86:1041–1057

    Article  Google Scholar 

  • Amine RM, Hadria FI (2012) Integration of NDVI indices from the tasseled cap transformation for change detection in satellite images. Int J Comput Sci 9(2):1694–0814

    Google Scholar 

  • Amiri MA, Karimi M, Sarab AA (2015) Hydrocarbon resources potential mapping using evidential belief functions and frequency ratio approaches, southeastern Saskatchewan, Canada. Can J Earth Sci 52(3):182–195

    Article  Google Scholar 

  • Andreoli G, Bulgarelli B, Hosgood B, Tarchi D (2007) Hyperspectral analysis of oil and oil-impacted soils for remote sensing purposes. European Commission, Joint Research Centre, Ispra, Italy, 34 pp

    Google Scholar 

  • Apel M (2006) Predict—a Bayesian resource potential assessment plug-in for Gocad. Available at: http://www.geo.tu-freiberg.de/~apelm/predict.htm. Accessed on 15 Oct 2015

  • Arnason K (1988) Geowissenschaftliche Ferner kundung mit Satelittendaten in Island—Möglichkeiten und Grenzen. Doctoralthesis, Ludwig-Maximilians University, Munich

    Google Scholar 

  • Arora MK, Shukla A, Gupta RP (2011) Digital information extraction techniques for snow cover mapping from remote sensing data. In: Singh VP, Singh P, Haritashya UK (eds) Encyclopedia of snow, ice and glacier. Springer, Dordrecht, pp 213–232

    Google Scholar 

  • Baker VR (1986) Fluvial landforms. In: Short NM, Blair RW Jr (eds) Geomorphology from space, NASA SP-486, US Govt Printing Office, Washington DC, pp 255–316

    Google Scholar 

  • Bakliwal PC, Grover AK (1988) Signature and migration of Saraswati River in Thar desert, Western India. . Rec Geol Surv India 116(3–8):77–86

    Google Scholar 

  • Bamber JL, Rivera A (2007) A review of remote sensing methods for glacier mass balance determination. Glob Planet Change 59:138–148

    Article  Google Scholar 

  • Belcher DJ (1960) Photointerpretation in engineering. In: Colwell RN (ed) Manual of photographic interpretation. Am Soc Photogramm, Falls Church, VA, pp 403–456

    Google Scholar 

  • Berger Z (1994) Satellite hydrocarbon exploration. Springer, Berlin, 319 pp

    Google Scholar 

  • Berlin GL, Schaber GG, Horstman KC (1980) Possible fault detection in Cottonball Basin, California: an application of radar remote sensing. Remote Sens Environ 10:33–42

    Article  Google Scholar 

  • Bharktya DK, Gupta RP (1981) Regional tectonics and sulphide ore localisation in Delhi-Aravalli belt, Rajasthan, India—use of Landsat imagery. Advances in Space Research vol l, Pergamon, London, pp 299–302

    Google Scholar 

  • Bharktya DK, Gupta RP (1983) Lineament structures in the Precambrians of Rajasthan as deciphered from Landsat images. Recent Researches in Geology, vol 10. Structure and tectonics of precambrian rocks. Hindustan Publishing, New Delhi, pp 186–197

    Google Scholar 

  • Bhattacharya A, Reddy S (1994) Underground and surface coal mine fire detection in India’s Jharia Coal Field using airborne thermal infrared data. Asian-Pacific Remote Sens J 7(1):59–73

    Google Scholar 

  • Bhattacharya A, Bolch T, Mukherjee K, Pieczonka T, Kropac J, Buchroithner M (2016) Overall recession and mass budget of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2015 using remote sensing data. J Glaciol 62(236):1115–1133

    Article  Google Scholar 

  • Bhuiyan C (2015) Hydrological characterisation of geological lineaments: a case study from the Aravalli terrain, India. Hydrogeol J 23:673–686

    Article  Google Scholar 

  • Billings WP (1950) Vegetation and plant growth as affected by chemically altered rocks in the Western Great Basin. Ecology 30:62–74

    Article  Google Scholar 

  • Biswas SK (1974) Landscape of Kutch: a morpho-tectonic analysis. Indian J Earth Sci 1:177–198

    Google Scholar 

  • Biswas SK (1987) Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics 135:307–327

    Article  Google Scholar 

  • Björnsson S, Arnason K (1988) Strengths and shortcomings in ATM technology as applied to volcanic and geothermal areas in Iceland. Proceedings of the 4th International Conference, Spectral Signatures of Objects in Remote Sensing, Aussois, France, ESA-SP287, pp 189–191

    Google Scholar 

  • Blackett M (2016) Progress in the infrared remote sensing of volcanic activity. http://dx.doi.org/10.20944/preprints201610.0011.v1. Accessed on 6 Nov 2016

  • Blackett M (2017) An overview of infrared remote sensing of volcanic activity. J Imaging 3:13. doi:10.3390/jimaging3020013

  • Bloom AL (1986) Coastal landforms. In: Short NM, Blair RW Jr (eds) Geomorphology from Space. NASA SP-486 US Govt Printing Office, Washington DC, pp 353–406

    Google Scholar 

  • Bloom AL (1997) Geomorphology: a systematic analysis of late Cenozoic landforms, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Bobba AG, Bukata RP, Jerome JH (1992) Digitally processed satellite data as a tool in detecting potential groundwater flow systems. J Hydrol 131:25–62

    Google Scholar 

  • Bodechtel J, Kley M, Münzer U (1985) Tectonic analysis of typical fold structures in the Zagros Mountains, Iran, by the application of quantitative photogrammetric methods on Metric Camera data. In: Proceedings DFVLR-ESA workshop oberpfaffenhofen, ESA SP-209, pp 193–197

    Google Scholar 

  • Bolch T et al (2012) The state and fate of Himalayan glaciers. Science 336:310–314

    Article  Google Scholar 

  • Bonham-Carter GF (1994) Geographic information systems for geoscientists. Pergamon, Oxford

    Google Scholar 

  • Briole P, Massonnet D, Delacourt C (1997) Post-eruptive deformation associated with the 1986–87 and 1989 lave flows of Etna, detected by radar interferometry. Geophys Res Lett 24:37–40

    Article  Google Scholar 

  • Brooks RR (1972) Geobotany and biogeochemistry in mineral exploration. Harper and Row, New York, 290 pp

    Google Scholar 

  • Brooks RR (1980) Indicator plants for mineral prospecting—a critique. J Geochem Explor 12:67–78

    Article  Google Scholar 

  • Brown A (2000) Evaluation of possible gas microseepage mechanisms. Am Assoc Petrol Geol Bull 84:1775–1789

    Google Scholar 

  • Burns KL, Brown GH (1978) The human perception of geological lineaments and other discrete features in remote sensing imagery: signal strength, noise levels and quality. Remote Sens Environ 7:163–167

    Article  Google Scholar 

  • Carranza EJM (2008) Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of exploration and environmental geochemistry vol 11. Elsevier, Amsterdam, 351 pp

    Google Scholar 

  • Carter A, Ramsey M (2010) Long-term volcanic activity at Shiveluch volcano: nine years of ASTER spaceborne thermal infrared observations. Remote Sens 2:2571–2583. doi:10.3390/rs2112571

  • Carter AJ, Girina O, Ramsey MS, Demyanchuk YV (2008) ASTER and field observations of the 24 December 2006 eruption of Bezymianny volcano, Russia. Remote Sens Environ 112:2569–2577

    Article  Google Scholar 

  • Chakraborty R, Gupta RP, Awasthi AK (2010) Model thermal anomalies over petroliferous basins. Oil Gas J 108:72–75

    Google Scholar 

  • Chander R (1989) Southem limits of major earthquake ruptures along the Himalaya between longitudes 75° and 90° E. Tectonophysics 170:115–123

    Article  Google Scholar 

  • Chandra S, Rao VA, Krishnamurthy NS, Dutta S, Ahmed S (2006) Integrated studies for characterization of lineaments used to locate groundwater potential zones in a hard rock region of Karnataka, India. Hydrogeol J 14:1042–1051

    Article  Google Scholar 

  • Chatterjee RS (2006) Coal fire mapping from satellite thermal IR data—a case example in Jharia Coalfield, Jharkhand, India. ISPRS J Photogramm Remote Sens 60:113–128

    Article  Google Scholar 

  • Chatterjee RS, Wahiduzzaman Md, Shah A, Raju EVR, Lakhera RC, Dadhwal VK (2007) Dynamics of coal fire in Jharia coalfield, Jharkhand, India during the 1990s as observed from space. Curr Sci 92:62–68

    Google Scholar 

  • Chatterjee RS, Thapa S, Singh KB, Varunakumar G, Raju EVR (2015) Detecting, mapping and monitoring of land subsidence in Jharia coalfield, Jharkhand, India by spaceborne differential interferometric SAR, GPS and precision levelling techniques. J Earth Syst Sci 124(6):1359–1376

    Article  Google Scholar 

  • Chatterjee RS, Singh KB, Thapa S, Kumar D (2016) The present status of subsiding land vulnerable to roof collapse in the Jharia Coalfield, India, as obtained from shorter temporal baseline C-band DInSAR by smaller spatial subset unwrapped phase profiling. Int J Remote Sens 37(1):176–190

    Article  Google Scholar 

  • Chattopadhyay N, Hashimi S (1984) The Sung valley alkaline-ultramafic-carbonatite complex, East Kasi and Jaintia Hills Districts, Meghalaya. Rec Geol Surv India 113(IV):24–33

    Google Scholar 

  • Chavez PS Jr, Kwarteng AY (1989) Extracting spectral contrast in Landsat thematic mapper image data using selective principal component analysis. Photogramm Eng Remote Sens 55:339–348

    Google Scholar 

  • Cloutis E (1989) Spectral reflectance properties of hydrocarbons: remote-sensing implications. Science 245:165–168

    Article  Google Scholar 

  • Coleman IM, Roberts HH, Huh OK (1986) Deltaic landforms. In: Short NM, Blair RW Jr (eds) Geomorphology from space, NASA-SP-486, US Govt Printing Office, Washington, DC, pp 317–352

    Google Scholar 

  • Collins W, Chang SH, Raines G, Channey F, Ashley R (1983) Airborne biogeochemical mapping of hidden mineral deposits. Econ Geol 78:737–749

    Article  Google Scholar 

  • Conel JE, Alley RE (1985) Lisbon Valley, Utah, uranium test case report. The Joint NASA-Geosat Test Case Study, Section 8, Am Assoc Petrol Geol, Tulsa, Oklahoma

    Google Scholar 

  • Congalton RG (2005) Thematic and positional accuracy assessment of digital remotely sensed data. In: Proceedings of the 7th annual forest inventory and analysis symposium, 3–6 Oct 2005. US Department of Agriculture, Portland, USA

    Google Scholar 

  • Congalton RG, Green K (1993) A practical look at the sources of confusion in error matrix generation. Photogram Eng Remote Sens 59:641–644

    Google Scholar 

  • Congalton RG, Green K (2008) Assessing the accuracy of remotely sensed data: principles and practices. CRC Press, New York

    Google Scholar 

  • Corrie RK, Ninomiya Y, Aitchison JC (2010) Applying advanced spaceborne thermal emission and reflection radiometer (Aster) spectral indices for geological mapping and mineral identification on the Tibetan plateau. Int Archives Photogramm Remote Sens Spatial Inf Sci XXXVIII(8):464–469, Kyoto, Japan

    Google Scholar 

  • Cox D, Singer DA (eds) (1986) Mineral deposit models. USGS Bull1693, U S Geol Surv, Washington D C

    Google Scholar 

  • Cracknell AP (1998) Review article: synergy in remote sensing-what’s in a pixel? Int J Remote Sens 19:2025–2074

    Article  Google Scholar 

  • Crosta AP, Filho CRS, Azevedo F, Brodie C (2003) Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. Int J Remote Sens 24:4233–4240

    Article  Google Scholar 

  • Crowley JK, Brickey WD, Rowan LC (1989) Airborne imaging spectrometer data of the Ruby Mountains, Montana: mineral discrimination using relative absorption band-depth images. Remote Sens Environ 29:121–134

    Article  Google Scholar 

  • De Palomera AP, van Ruitenbeek FJA, Carranza EJM (2015) Prospectivity for epithermal gold–silver deposits in the Deseado Massif, Argentina. Ore Geol Rev 71:484–501

    Article  Google Scholar 

  • Dean K, Servilla M, Roach A, Foster B, Engle K (1998) Satellite monitoring of remote volcanoes improves study efforts in Alaska. Eos Trans Am Geophys Union 79:413–423

    Article  Google Scholar 

  • Dehn J, Dean K, Engle K (2000) Thermal monitoring of north pacific volcanoes from space. Geology 28:755–758

    Article  Google Scholar 

  • Denniss AM, Harris AJL, Rothery DA, Francis PW, Carlton RW (1998) Satellite observation of the April 1993 eruption of Lascar volcano. Int J Remote Sens 19(5):801–821

    Article  Google Scholar 

  • Deutsch M, Estes JE (1980) Landsat detection of oil from natural seeps. Photogramm Eng Remote Sens 46:1313–1322

    Google Scholar 

  • Dong L, Shan J (2013) A comprehensive review of earthquake-induced building damage detection with remote sensing techniques. ISPRS J Photogramm Remote Sens 84:85–99

    Article  Google Scholar 

  • Dong S, Yin H, Yao S, Zhang F (2013) Detecting surface subsidence in coal mining area based on DInSAR technique. J Earth Sci 24(3):449–456

    Article  Google Scholar 

  • Donne DD, Harris AJL, Ripepe M, Wright R (2010) Earthquake-induced thermal anomalies at active volcanoes. Geology 38(9):771–774

    Article  Google Scholar 

  • Dozier J (1989) Spectral signature of alpine snow-cover from the Landsat Thematic Mapper. Remote Sens Environ 28:9–22

    Article  Google Scholar 

  • Dozier J, Painter TH (2004) Multispectral and hyperspectral remote sensing of alpine snow properties. Annu Rev Earth Planet Sci 32:465–494

    Article  Google Scholar 

  • Drury SA (2004) Image Interpretation in Geology, 3rd edn. Blackwell Sciences, Malden MA, 304 p

    Google Scholar 

  • Du X et al (2015) Self-adaptive gradient-based thresholding method for coal fire detection based on ASTER data—part 2, validation and sensitivity analysis. Remote Sens 7:2602–2626

    Article  Google Scholar 

  • Duda RO, Hart PE, Nilsson NJ, Sutherland GL (1978) Semantic network representations in rule-based interference systems. In: Waterman DA, Hayes-Roth F (eds) Pattern-directed inference systems. Academic Press, New York, pp 203–221

    Google Scholar 

  • Dunn CE (2007) Biogeochemistry in mineral exploration. In: Hale M (ed) Handbook of mineral exploration and environmental geochemistry, vol 9. Elsevier, Amsterdam, 480 pp

    Google Scholar 

  • Elachi C, Roth LE, Schaber GG (1984) Spacebome radar subsurface imaging in hyperarie regions. IEEE Trans GE-22:382–387

    Google Scholar 

  • Elewa HH, Qaddah AA (2011) Groundwater potentiality mapping in the Sinai Peninsula, Egypt, using remote sensing and GIS-watershed-based modeling. Hydrogeol J 19:613–628

    Article  Google Scholar 

  • Ellyett CD, Fleming AW (1974) Thermal infrared imagery of the Buming Mountain coal fire. Remote Sens Environ 3(1):79–86

    Article  Google Scholar 

  • Ellyett CD, Pratt DA (1975) A review of the potential applications of remote sensing techniques to hydrogeological studies in Australia. Australian Water Resources Council Technical Paper No 13, 147 pp

    Google Scholar 

  • Elvidge CD (1982) Affect of vegetation on airborne thematic maper imagery of the Kalamazoo porphyry copper deposit, Arizona. In: International symposium remote sensing environment, 2nd Thematic conference remote sensing for exploration geology. Fort Worth, Texas, pp 661–667

    Google Scholar 

  • Engelbrecht J, Inggs MR, Makusha G (2011) Detection and monitoring of surface subsidence associated with mining activities in the Witbank coalfields, South Africa, using differential radar interferometry. S Afr J Geol 114:77–94

    Article  Google Scholar 

  • Evans DL, Plant JJ, Stofan ER (1997) Overview of the Spacebome Imaging Radar-C/X band Synthetic Aperture Radar (SIR-C/X-SAR) missions. Remote Sens Environ 59:135–140

    Google Scholar 

  • Everett IR, Morisawa M, Short NM (1986) Tectonic landform. In: Short NM, Blair RW Jl (eds) Geomorphology from space, NASA SP-486, US Govt Printing Office, Washingtor DC, pp 27–184

    Google Scholar 

  • Fahnestock M et al (2016) Rapid large-area mapping of ice flow using Landsat 8. Remote Sens Environ 185:84–94

    Article  Google Scholar 

  • Fingas M, Brown C (2014) Review of oil spill remote sensing. Mar Pollut Bull 83:9–23

    Article  Google Scholar 

  • Flynn LP, Wright R, Garbeil H, Harris AJL, Pilger E (2002) A global thermal alert system using MODIS: initial results from 2000–2001. Adv Environ Monit Model 1:37–69

    Google Scholar 

  • Fons L (1999) Temperature method can help locate oil, gas deposits. Oil Gas J 97:59–64

    Google Scholar 

  • Fons L (2000) Temperature anomaly mapping identifies subsurface hydrocarbons. World Oil, Sept 2000. http://findarticles.com/p/articles/mi_m3159/is_9_221/ai_65487026

  • Fookes PG, Sweeney M, Manby CND, Martin RP (1985) Geological and geotechnical engineering aspects of low-cost roads in mountainous terrain. Eng Geol 21:1–152

    Article  Google Scholar 

  • Francis PW, De Silva SL (1989) Application of the landsat thematic mapper to the identification of potentially active volcanoes in the Central Andes. Remote Sens Environ 28:245–255

    Article  Google Scholar 

  • Francis PW, Rothery DA (1987) Using the Landsat Thematic Mapper to detect and monitor active volcanoes: an example from Lascar volcano, northern Chile. Geology 15:614–617

    Article  Google Scholar 

  • Fraser SJ (1991) Discrimination and identification of ferric oxides using satellite thematic mapper data: a Newman case study. Int J Remote Sens 12(3):635–641

    Article  Google Scholar 

  • Fraser SJ, Green AA (1987) A software defoliant for geological analysis of band ratios. Int J Remote Sens 8:525–532

    Article  Google Scholar 

  • Fu B, Zheng G, Ninomiya Y, Wang C, Sun G (2007) Mapping hydrocarbon-induced mineralogical alteration in the northern Tian Shan using ASTER multispectral data. Terra Nova 19:225–231

    Article  Google Scholar 

  • Fu B, Ninomiya Y, Guo J (2010) Slip partitioning in the northeast Pamir-Tian Shan convergence zone. Tectonophysics 483:344–364

    Article  Google Scholar 

  • Gabr S, Ghulam A, Kusky T (2010) Detecting areas of high-potential gold mineralization using ASTER data. Ore Geol Rev 38:59–69

    Article  Google Scholar 

  • Galloway DL, Hoffman J (2007) The application of satellite differential SAR interferometry derived ground displacements in hydrogeology. Hydrogeol J 15:133–154

    Article  Google Scholar 

  • Gangopadhyay PK (1967) Structural framework of Alwar region with special reference to the occurrence of some rock types. In: Proceedings symposium Upper Mantle Project, Nat Geophys Res Inst, Hyderabad, pp 420–429

    Google Scholar 

  • Gansser A (1968) The insubric Line—a major geotectonic problem. Schweiz Mineral Petrogr Mitt 48:123–143

    Google Scholar 

  • Gillespie AR, Kahle AB, Palluconi FD (1984) Mapping alluvial fans in Death Valley, California using multichannel thermal infrared images. Geophys Res Lett 11:1153–1156

    Article  Google Scholar 

  • Glaze LS, Francis PW, DA SelfS Rothery (1989) The 16 September 1986 eruption of Lascar volcano, north Chile: satellite investigations. Bull Volcanol 51:146–160

    Article  Google Scholar 

  • Goetz AFH, Rowan LC (1981) Geologic remote sensing. Science 211:781–791

    Google Scholar 

  • González-Álvarez I, Porwal A, Beresford SW, McCuaig TC, Maier WD (2010) Hydrothermal Ni prospectivity analysis of Tasmania, Australia. Ore Geol Rev 38:168–183

    Article  Google Scholar 

  • Guilbert JM, Park CF Jr (1986) The Geology of ore deposits. Freeman, New York, 985p

    Google Scholar 

  • Guild PW (1972) Metallogeny and the new global tectonics. In: Proceedings of the 24th international geological congress Sect 4, Mineral Deposits, pp 17–24

    Google Scholar 

  • Gupta RP (1977a) Delineation of active faulting and some tectonic interpretations in Munich-Milan section of eastem Alps-use of Landsat imagery. Tectonophysics 38:297–315

    Article  Google Scholar 

  • Gupta RP (1977b) Neue geologische Strukuren in Himalaja entdekt. Umschau 77:329–330

    Google Scholar 

  • Gupta RP (2003) Remote sensing geology, 2nd edn. Springer, Berlin, 655p

    Google Scholar 

  • Gupta RP (2011) Dry and wet snow line/zone. In: Singh VP, Singh P, Haritashya UK (eds) Encyclopedia of snow, ice and glacier. Springer, Dordrecht, pp 240–241

    Google Scholar 

  • Gupta RP, Joshi BC (1990) Landslide hazard zoning using the GIS approach—a case study from the Ramganga Catchment, Himalayas. Eng Geol 28:119–131

    Article  Google Scholar 

  • Gupta RP, Prakash A (1998) Reflectance aureoles associated with thermal anomalies due to subsurface mine fires in the Jharia coalfield, India. Int J Remote Sensing 19(14):2619–2622

    Article  Google Scholar 

  • Gupta RP, Saha AK (2000) Mapping debris flows in the Himalayas. GIS@Development IV(12):26–27. http://www.gis-development.net

  • Gupta RP, Sen AK (1988) Imprints of the Ninety-East Ridge in the Shillong Plateau, Indian Shield. Tectonophysics 154:335–341

    Article  Google Scholar 

  • Gupta RP, Saraf AK, Chander R (1998) Discrimination of areas susceptible to earthquake induced liquefaction from Landsat data. Int J Remote Sens 19(4):569–572

    Article  Google Scholar 

  • Gupta RP, Haritashya UK, Singh P (2005) Mapping dry/wet snow cover in the Indian Himalayas using IRS multispectral imagery. Remote Sensing Environ 97(4):258–269

    Article  Google Scholar 

  • Gupta RP, Chakraborty R, Awasthi AK (2009) Satellite data can cost effectively show oil field thermal anomalies. Oil Gas J 107:34–36

    Google Scholar 

  • Haeberli W, Hoelzle M, Suter S (1998) In to the second century of worldwide glacier monitoring: prospects and strategies. A contribution to the International Hydrological Programme (IHP) and the Global Environment Monitoring System (GEMS), UNESCO Studies and Reports in Hydrology, vol 56, 228 p

    Google Scholar 

  • Haeberli WR, Frauenfelder R, Hoelzle M, Maisch M (1999) On rates and acceleration trends of global glacier mass changes. Geogr Ann Ser A Phys Geogr 81:585–595

    Article  Google Scholar 

  • Halbouty MT (1976) Application of Landsat imagery to petroleum and mineral exploration. Am Assoc petrol Geol Bull 60:745–793

    Google Scholar 

  • Halbouty MT (1980) Geologic significance of Landsat data of 15 giant oil and gas fields. Am Assoc Petrol Geol Bull 64(1):8–36

    Google Scholar 

  • Hall DK (1998) Remote sensing of snow and ice using imaging radar. In: Henderson FM, Lewis LA, Ryerson RA (eds) Principles and applications of imaging radars, vol. 2, 3rd edn. Wiley, New York, pp. 677–703

    Google Scholar 

  • Hall DK, Ormsby JP, Bindschadler RA, Siddalingaiah H (1987) Characterization of snow and ice zones on glaciers using Landsat Thematic Mapper data. Ann Glaciol 9:104–108

    Article  Google Scholar 

  • Hall DK, Foster JL, Chang ATC (1992) Reflectance of snow as measured in situ and from space in sub-arctic areas in Canada and Alaska. IEEE Trans Geosci Remote Sens 30(3):634–637

    Article  Google Scholar 

  • Hall DK, Riggs GA, Salomonson VV (1995) Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens Environ 54:127–140

    Article  Google Scholar 

  • Harris AJL, Vaughan RA, Rothery DA (1995) Volcano detection and monitoring using AVHRR data: the Krafla eruption, 1984. Int J Remote Sens 16:1001–1020

    Article  Google Scholar 

  • Hartley J (2003) Earth remote sensing technologies in the twentyfirst century. In: Proceedings of international geoscience and remote sensing symposium (IGARSS-2003), July 21–25, Toulouse, France, vol 1, pp 627–629

    Google Scholar 

  • Haselwimmer C, Prakash A (2012) Thermal infrared remote sensing of geothermal systems (Chap. 22). In: Kuenzer C, Dech S (eds) Thermal infrared remote sensing: sensors, methods, applications, remote sensing and digital image processing 17, Springer, Dordrecht, pp 453–473

    Google Scholar 

  • Haselwimmer C, Prakash A, Holdmann G (2013) Quantifying the heat flux and outflow rate of hot springs using airborne thermal imagery: case study from Pilgrim Hot Springs, Alaska. Remote Sens Environ 136:37–46

    Article  Google Scholar 

  • Heid T, Kääb A (2012) Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery. Remote Sens Environ 118:339–355

    Google Scholar 

  • Heron AM (1922) Geology of the western Jaipur. Rec Geol Surv Ind LIV: 345–397

    Google Scholar 

  • Heron AM (1953) The geology of central Rajputana. Mem Geol Surv Ind 79:1–389

    Google Scholar 

  • Hoerig B, Kuehn F, Oschuetz F, Lehmann F (2001) HyMap hyperspectral remote sensing to detect hydrocarbons. Int. J. Remote Sens 22(8):1413–1422

    Article  Google Scholar 

  • Hook SJ, Dmochowski JE, Howard KA, Rowan LC, Karlstrom KE, Stock JM (2005) Mapping variations in weight percent silica measured from multispectral thermal infrared imagery—examples from the Hiller mountains, Nevada, USA, and Tres Virgenes-La Reforma Baja California Sur, Mexico. Remote Sens Environ 95:273–289

    Article  Google Scholar 

  • Horler DNH, Barber J, Barringer AR (1980) Effects of heavy metals on the absorbance and reflectance spectra of plants. Int J Remote Sens 1:121–136

    Article  Google Scholar 

  • Horler DNH, Dockray M, Barber J, Barringer AR (1983) Red edge measurements for remote sensing plant chlorophyll content. In: Proceedings symposium remote sensing mineral exploration communication on space research, Ottawa

    Google Scholar 

  • Howard AD (1967) Drainage analysis in geologie al interpretation: a summation. Am Assoc Petrol Geol Bull 51:2246–2259

    Google Scholar 

  • Huang Y, Huang H, Chen W, Li Y (1991) Remote sensing approaches for underground coal fire detection. In: Proceedings of the international conference on reducing of geological hazards, Beijing, pp 634–641

    Google Scholar 

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309

    Article  Google Scholar 

  • Huo et al (2015) A study of coal fire propagation with remotely sensed thermal infrared data. Remote Sens 7:3088–3113

    Article  Google Scholar 

  • Hutsinpiller A (1988) Discrimination of hydrothermal alteration mineral assemblages at Virginia City, Nevada, using the airborne imaging spectrometer. Remote Sens Environ 24:53–66

    Article  Google Scholar 

  • IPCC (2007) Climate change: the physical science basis. In: Solomon S et al (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, UK, p 996

    Google Scholar 

  • Jakobsson SP (1979) Petrology of recent basalts of the eastern volcanie zone, Iceland. Aeta Naturalia Islandiea, No 26, Icelandic Museum of Natural History, Reykjavik

    Google Scholar 

  • Jayaweera K, Seifert R, Wendler G (1976) Satellite observations of the eruption of Tolbackhik Volcano. Trans Am Geophys Union 57:196–200

    Article  Google Scholar 

  • Jha MN, Levy J, Gao Y (2008) Advances in remote sensing for oil spill disaster management: state-of-the-art sensors technology for oil spill surveillance. Sensors 8:236–255

    Article  Google Scholar 

  • Kanungo DP, Arora MK, Sarkar S, Gupta RP (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng Geol 85:347–366

    Article  Google Scholar 

  • Kargel JS et al (2005) Multispectral imaging contributions to global land ice measurements from space. Remote Sens Environ 99(1–2):187–219

    Article  Google Scholar 

  • Kargel JS et al (2016) Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake. Science 351:aac8353. doi:10.1126/science.aac8353

  • Katz SS (1991) Emulating the ‘Prospector’ expert system with a raster GIS. Comput Geosci 17:1033–1050

    Article  Google Scholar 

  • Kaufmann HJ (1988) Mineral exploration along the Aqaba-Levant structure by use of TM data-concepts, processing and results. Int J Remote Sens 9(10–11):1639–1658

    Article  Google Scholar 

  • Kauth RJ, Thomas GS (1976) The tasseled cap—a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. In: Proceedings symposium machine processing of remotely sensed data, Purdue University, West Lafayette, Indiana, pp 4B-41-50

    Google Scholar 

  • Kayal JR (1987) Microseismicity and source mechanism study: Shillong Plateau, northeast India. Bull Seism Soc Am 77(1):184–194

    Google Scholar 

  • Keshri A, Shukla A, Gupta RP (2009) ASTER ratio indices for supraglacial terrain mapping. Int J Remote Sens 30(2):519–524

    Article  Google Scholar 

  • Khan S, Jacobson S (2008) Remote sensing and geochemistry for detecting hydrocarbon microseepages. Geol Soc Am Bull 120:96–105

    Article  Google Scholar 

  • Khazenie N, Richardson KA (1993) Detection of oil fire smoke over water in the Persian Gulf region. Photogramm Eng Remote Sens 59:1271–1276

    Google Scholar 

  • Khorram S, van der Wiele C, Koch FH, Nelson SAC, Potts MD (2016) Principles of applied remote sensing. Springer, 306p

    Google Scholar 

  • Kim CY, Hong SW, Kim KY, Baek SH, Bae GJ, Han BH, Jue KS (2005) GIS-based application and intelligent management of geotechnical information and construction data in tunnelling. In: Erdem Y, Solak T (eds) Underground space use—analysis of the past and lessons for the future, Proc int world tunnel congress and the 31st ITA General Assembly, Istanbul, Turkey, Taylor & Francis pp 197–204

    Google Scholar 

  • Koike K, Nagano S, Ohmi M (1995) Lineament analysis of satellite images using a segment tracing algorithm (STA). Comput Geosci 21:1091–1104

    Article  Google Scholar 

  • Kreiter VM (1968) Geological prospecting and exploration. Mir, Moscow, 361 p

    Google Scholar 

  • Kreuzer OP et al (2015) Comparing prospectivity modelling results and past exploration data: a case study of porphyry Cu–Au mineral systems in the Macquarie Arc, Lachlan Fold Belt, New South Wales. Ore Geol Rev 71:516–544

    Article  Google Scholar 

  • Krishnamurthy J, Venkatesa Kumar N, Jayaraman V, Manivel M (1996) An approach to demarcate groundwater potential zones through remote sensing and a geographic information system. Int J Remote Sens 17:1867–1884

    Article  Google Scholar 

  • Kuenzer C, Hecker C, Zhang J, Wessling S, Wagner W (2008) The potential of multidiurnal MODIS thermal band data for coal fire detection. Int J Remote Sens 29:923–944

    Article  Google Scholar 

  • Kumar R, Anbalagan R (2016) Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri reservoir rim region, Uttarakhand. J Geol Soc Ind 87:271–286

    Article  Google Scholar 

  • Labovitz ML, Masuoka EJ, Bell R, Nelson RF, Latsen EA, Hooker LK, Troensegaard KW (1985) Experimental evidence for spring and autumn windows for the detection for geobotanical anomalies through the remote sensing of overlying vegetation. Int J Remote Sens 6:195–216

    Article  Google Scholar 

  • Lang HR (1999) Stratigraphy. In: Rencz AN (ed) Remote sensing for the earth sciences, manual of remote sensing, vol 3, 3rd edn, Am Soc Photogram Remote Sens. Wiley, New York, pp 357–374

    Google Scholar 

  • Lang HR, Alderman WH, Sabins FF (1985) Patrick draw, wyoming, petroleum test case report. The Joint NASA/Geosat Test Case Project, Sect 11, Am Assoc Petrol Geol Tulsa, Oklahoma

    Google Scholar 

  • Lattman LH, Parizek RR (1964) Relationship between fracture traces and the occurrence of groundwater in carbonate rocks. J Hydrol 2:73–91

    Article  Google Scholar 

  • Laubseher HP (1971) The large-scale kinematics of the western Alps and the western Apennines and its palinspastic implications. Am J Sci 271:193–226

    Article  Google Scholar 

  • Limaye SS, Suomi VE, Velden C, Tripoli G (1991) Satellite observation of smoke from oil fires in Kuwait. Science 252:1536–1539

    Article  Google Scholar 

  • Lindsay MD, Betts PG, Ailleres L (2014) Data fusion and porphyry copper prospectivity models, southeastern Arizona. Ore Geol Rev 61:120–140

    Article  Google Scholar 

  • Lockwood JP, Lipman PW (1987) Holocene eruptive history of Mauna Loa volcano. In: Decker RW, Write TL, Stauffer PH (eds) Volcanism in Hawaii. Voll, USGS Prof Pap 1350, U S Geological Survey, Washington DC, pp 509–535

    Google Scholar 

  • Lu Z, Dzurisin D (2010) Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, inferred from InSAR analysis: II. Co-eruptive deflation, July–August 2008. J Geophys Res 115:B00B02. doi:10.1029/2009JB006970

  • Lu Z, Dzurisin D, Biggs J, Wicks C Jr, McNutt S (2010) Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, inferred from InSAR analysis: I. Inter-eruptive deformation, 1997–2008. J Geophys Res 115:B00B03. doi:10.1029/2009JB006969

  • Lyon RJP, Elvidge C, Lyon JG (1982) Practical requirements for operational use of geobotany and biogeochemistry in mineral exploration. In: Proceedings international symposium remote sensing environment, 2nd thematic conference remote sensing exploration geology, Fort Worth, Texas, pp 85–91

    Google Scholar 

  • Macias LF (1995) Remote sensing of mafic-ultramafie rocks: examples from Australian Precambrian terranes. J Aust Geol Geophys 16:163–171

    Google Scholar 

  • Mansor SB, Cracknell AP, Shilin BV, Gornyi VI (1994) Monitoring of underground coal fires using thermal infrared data. Int J Remote Sens 15(8):1675–1685

    Article  Google Scholar 

  • Mars JC, Rowan LC (2006) Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere 2(3):161–186

    Google Scholar 

  • Martha TR, Guha A, Kumar KV, Kamaraju MVV, Raju EVR (2010) Recent coal-fire and land-use status of Jharia Coalfield, India from satellite data. Int J Remote Sens 31:3243–3262

    Article  Google Scholar 

  • Massonnet D, Briole P, Arnaud A (1995) Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature 375:567–570

    Article  Google Scholar 

  • Matson M, Dozier J (1981) Identifieation of subresolution high temperature sources using a thermal infrared sensor. Photogramm Eng Remote Sens 47(9):1311–1318

    Google Scholar 

  • McCauley JF, Schaber GC, Breed CS, Grolier MJ, Haynes CV, Issawi B, Elachi C, BIom R (1982) Subsurface valleys and geoarchaeology of the eastern Sahara revealed by shuttle radar. Science 218:1004–1019

    Google Scholar 

  • McCuaig TC, Beresford S, Hronsky JMA (2010) Translating the mineral systems approach into an effective exploration targeting system. Ore Geol Rev 38:128–138

    Article  Google Scholar 

  • Mckinstry HE (1948) Mining geology. Prentice Hall, Englewood Cliffs, NJ, 680 p

    Google Scholar 

  • Milton NM, Collins W, Chang SH, Schmidt RG (1983) Remote detection of metal anomalies on Pilot Mountain, Randolph County, North Carolina. Econ Geol 78:605–617

    Article  Google Scholar 

  • Mohanty KK, Maiti K, Nayak S (2001) Monitoring water surges. GIS@Development 5(3):32–33, http://www.gis-development.net

  • Moore GK, Waltz FA (1983) Objective procedures for lineament enhancement and extraction. Photogram Eng Remote Sens 49:641–647

    Google Scholar 

  • Mouat DA (1982) The response of vegetation to geochemical conditions. In: Proceedings international symposium remote sensing environment, 2nd thematic conference remote sensing exploration geology, Fort Worth, Texas, pp 75–84

    Google Scholar 

  • Nagarajan R, Mukherjee A, Roy A, Khire MV (1998) Temporal remote sensing data and GIS application in landslide hazard zonation of part of Western Ghat, India. Int J Remote Sens 19(4):573–585

    Article  Google Scholar 

  • Nampak H, Pradhan B, Manap M (2014) Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. J Hydrol 513:283–300

    Article  Google Scholar 

  • Ninomiya Y (1995) Quantitative estimation of SiO2 content in igneous rocks using thermal infrared spectra with a neural network approach. IEEE Trans Geosci Remote Sens 33:684–691

    Google Scholar 

  • Ninomiya Y (2003a) Rock type mapping with indices defined for multispectral thermal infrared ASTER data: case studies. Proc SPIE 4886:123–132

    Google Scholar 

  • Ninomiya Y (2003b) A stabilized vegetation index and several mineralogic indices defined for ASTER VNIR and SWIR data. In: Proceedings international geoscience and remote sensing symposium (IGARSS-2003) (IEEE) 1294172. doi:10.1109/IGARSS.2003.1294172

  • Ninomiya Y (2004) Lithologic mapping with multispectral ASTER TIR and SWIR data. Proc SPIE 5234:180–190

    Article  Google Scholar 

  • Ninomiya Y, Fu B (2001) Spectral indices for lithologic mapping with ASTER thermal infrared data applying to a part of Beishan mountains, Gansu, China. In: IEEE—IGARSS remote sensing and geoscience symposium, 9–13 July 2001, vol 7, pp 2988–2990

    Google Scholar 

  • Ninomiya Y, Fu B (2002) Mapping quartz, carbonate minerals and mafic–ultramafic rocks using remotely sensed multispectral thermal infrared ASTER data. Proc SPIE 4710:191–202

    Article  Google Scholar 

  • Ninomiya Y, Fu B, Cudahy TJ (2005) Detecting lithology with advanced spaceborne thermal emission and reflection radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data. Remote Sens Environ 99:127–139

    Article  Google Scholar 

  • Ninomiya Y, Fu B (2016) Regional lithological mapping using ASTER-TIR data: case study for the Tibetan Plateau and the surrounding area. Geosciences, 6, 39. doi:10.3390/geosciences6030039

  • Nkoane BBM, Sawula GM, Wibetoe G, Lund W (2005) Identification of Cu and Ni indicator plants from mineralized locations in Botswana. J Geochem Explor 86(3):130–142

    Article  Google Scholar 

  • Oerlemans J (2005) Extracting climate signals from 169 glacier records. Science 308:675–677

    Article  Google Scholar 

  • Offield TW, Abbott EA, Gillespie AR, Loguercio SO (1977) Structure mapping on enhanced Landsat images of southern Brazil: tectonic control of mineralization and speculation on metallogency. Geophysics 42:482–500

    Article  Google Scholar 

  • O’Leary DW, Friedman JD, Pohn HA (1976) Lineament, linear and lineation: some proposed new standards for old terms. Geol Soc Am Bull 87:1463–1469

    Article  Google Scholar 

  • Oppenheimer C (1991) Lava flow cooling estimated from Landsat Thematic Mapper infrared data: the Lonquimay eruption (Chile, 1989). J Geophys Res 96:21865–21878

    Google Scholar 

  • Oppenheimer C, Francis PW, Rothery DA, Carlton RW, Glaze LS (1993) Infrared image analysis of volcanic thermal features: Volcano Lascar, Chile, 1984–1992. J Geophys Res 98:4269–4286

    Article  Google Scholar 

  • Pal Yash, Sahai B, Sood RK, Agrawal DP (1980) Remote sensing of the ‘lost’ Saraswati river. Proc Ind Acad Sci (Earth Planet Sci) 89(3):317–331

    Google Scholar 

  • Parizek RR (1976) Lineaments and groundwater. In: McMurthy GT, Petersen GW (eds) Interdisciplinary application and interpretations of EREP data within the Susquehanna River Basin. Pennsylvania State University, pp 4-59–4-86

    Google Scholar 

  • Park I, Kim Y, Lee S (2014) Groundwater productivity potential mapping using evidential belief function. Groundwater 52:201–207

    Article  Google Scholar 

  • Partington GA (2010) Developing models using GIS to assess geological and economic risk: an example from VMS copper gold mineral exploration in Oman. Ore Geol Rev 38:197–207

    Article  Google Scholar 

  • Paul F, Kääb A, Haeberli W (2007) Recent glacier changes in the Alps observed by satellite: consequences for future monitoring strategies. Global Planet Change 56:111–122

    Article  Google Scholar 

  • Peters WC (1978) Exploration mining and geology. Wiley, New York, 644p

    Google Scholar 

  • Petrovic A, Khan SD, Chafetz HS (2008) Remote detection and geochemical studies for finding hydrocarbon-induced alterations in Lisbon Valley, Utah. Mar Petrol Geol 25:696–705

    Article  Google Scholar 

  • Philip G, Gupta RP, Bhattacharya A (1989) Channel migration studies in the middle Ganga basin, lndia, using remote sensing data. Int J Remote Sens 10:1141–1149

    Google Scholar 

  • Pieri DC, Abrams MJ (2004) ASTER watches the world’s volcanoes: a new paradigm for volcanological observations from orbit. J Volcanol Geotherm Res 135:13–28

    Article  Google Scholar 

  • Pieri D, Abrams M (2005) ASTER observations of thermal anomalies preceding the April 2003 eruption of Chikurachki volcano, Kurile Islands, Russia. Remote Sens Environ 99(1–2):84–89

    Article  Google Scholar 

  • Podwysocki MH, Segal DB, Abrams MJ (1983) Use of multispectral scanner images for assessment of hydrothermal alteration in the Marysvale, Utah mining area. Econ Geol 78:675–687

    Article  Google Scholar 

  • Porwal A, Carranza EJM (2015) Introduction to the special issue: GIS-based mineral potential modelling and geological data analyses for mineral exploration. Ore Geol Rev 71: 477–483

    Google Scholar 

  • Porwal AK, Kreuzer OP (2010) Introduction to the special issue: mineral prospectivity analysis and quantitative resource estimation. Ore Geol Rev 38:121–127

    Article  Google Scholar 

  • Porwal AK, González-Álvarez I, Markwitz V, McCuaig TC, Mamuse A (2010) Weights of evidence and logistic regression modeling of magmatic nickel sulfide prospectivity in the Yilgarn Craton, Western Australia. Ore Geol Rev 38:184–196

    Article  Google Scholar 

  • Porwal A et al (2015) Fuzzy inference systems for prospectivity modeling of mineral systems and a case-study for prospectivity mapping of surficial Uranium in Yeelirrie Area, Western Australia. Ore Geol Rev 71:839–852

    Article  Google Scholar 

  • Pour AB, Hashim M (2011) Spectral transformation of ASTER data and the discrimination of hydrothermal alteration minerals in a semi-arid region, SE Iran. Int J Phys Sci 6(8):2037–2059

    Google Scholar 

  • Pour AB, Hashim M (2012) The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geol Rev 44:1–9

    Article  Google Scholar 

  • Prakash S (1981) Soil dynamics. McGraw-Hill, New York, pp 274–339

    Google Scholar 

  • Prakash A, Gupta RP (1998) Land-use mapping and change detection in coal mining area—a case study in the Jharia Coalfield, India. Int J Remote Sens 19(3):391–410

    Article  Google Scholar 

  • Prakash A, Gupta RP (1999) Surface fires in the Jharia coalfield, India—their distribution and estimation of area and temperature from TM data. Int J Remote Sens 20(10):1935–1946

    Article  Google Scholar 

  • Prakash A, Saraf AK, Gupta RP, Dutta M, Sundaram RM (1995a) Surface thermal anomalies associated with underground fires in Jharia coal mines, India. Int J Remote Sens 16(12):2105–2109

    Article  Google Scholar 

  • Prakash A, Sastry RGS, Gupta RP, Saraf AK (1995b) Estimating the depth of buried hot features from thermal IR remote sensing data: a conceptual approach. Int J Remote Sens 16(13):2503–2510

    Article  Google Scholar 

  • Prakash A, Gupta RP, Saraf AK (1997) A landsat TM based comparative study of surface and subsurface fires in the Jharia coalfield, India. Int J Remote Sens 18(11):2463–2469

    Article  Google Scholar 

  • Price NJ, Cosgrove J (1990) Analysis of geological structures. Cambridge University Press, Cambridge, 502p

    Google Scholar 

  • Prost GL (2013) Remote sensing for geoscientists, 3rd edn, CRC Press, New York, 702 p

    Google Scholar 

  • Qu F, Lu Z, Poland M, Freymueller J, Zhang Q, Jung HS (2015) Post-eruptive inflation of Okmok Volcano, Alaska, from InSAR, 2008–2014. Remote Sens 7:16778–16794. doi:10.3390/rs71215839

  • Quincey DC et al (2005) Optical remote sensing techniques in high-mountain environments: application to glacial hazards. Prog Phys Geogr 29(4):475–505

    Article  Google Scholar 

  • Quinn MF et al (1994) Measurement and analysis procedures for remote identification of oil spills using a laser fluoro sensor. Int J Remote Sens 15:2637–2658

    Article  Google Scholar 

  • Racoviteanu AE, Williams MW, Barry RG (2008) Optical remote sensing of glacier characteristics: a review with focus on the Himalaya. Sensors 8:3355–3383

    Article  Google Scholar 

  • Rajawat AS (2014) SAR Applications in geosciences/geo-archaeology, NISAR Science Workshop, 17–18 Nov 2014. Space Applications Centre, ISRO, Ahmedabad, India. www.sac.gov.in/nisar/NISAR%20Science%20Workshop_Presentations/BR-GT1.pdf. Accessed on 18 Oct 2016

  • Singh SK, Rajawat, AS, Rathore BP, Bahuguna IM, Chakraborty M (2015) Detection of glacier lakes buried under snow by RISAT-1 SAR in the Himalayan terrain. Curr Sci 109(9):1728–1732

    Google Scholar 

  • Rajawat et al (2015) Assessment of coastal erosion along the Indian coast on 1: 25,000 scale using satellite data of 1989–1991 and 2004–2006 time frames. Curr Sci 109(2):347–353

    Google Scholar 

  • Rajendran S, Thirunavukkarasu A, Balamurugan G, Shankar K (2011) Discrimination of iron ore deposits of granulite terrain of southern peninsular India using ASTER data. J Asian Earth Sci 41:99–106

    Article  Google Scholar 

  • Rajendran S et al (2012) ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman mountain: exploration strategy. Ore Geol Rev 44:121–135

    Article  Google Scholar 

  • Rango A, Martinec J (1981) Accuracy of snowmelt runoff simulation. Nord Hydrol 12:265–274

    Google Scholar 

  • Rao NS (2006) Groundwater potential index in a crystalline terrain using remote sensing data. Environ Geol 50(7):1067–1076

    Article  Google Scholar 

  • Rao YSN, Rahman AA, Rao DP (1974) On the structure of the Siwalik range between the rivers Yamuna and Ganga. Himalayan Geol 4:137–150

    Google Scholar 

  • Rees GW (2006) Remote sensing of snow and ice. CRC Press, Boca Raton, p 284

    Google Scholar 

  • Rencz AN, Bowie C, Ward B (1996) Application of thermal imagery from Landsat data to identify kimberlites, Lac de Gras area, District of Mackenzie, N.W.T.: Searching for diamonds in Canada. In: Le Chaimant AN, Richardson DG, Di Labio RNW, Richardson KA (eds). Geological Survey of Canada, Open File 3228, pp 255–257

    Google Scholar 

  • Rib HT (1975) Engineering: regional inventories, corridor surveys and site investigations. In: Reeves RG (ed) Manual of remote Sensing, Am Soc Photogramm, Falls Church, VA, pt 2, pp 1881–1945

    Google Scholar 

  • Rib HT, Liang TA (1978) Recognition and identification. In: Schuster RL, Krizek RV (eds) Landslides analysis and control. Trans Res Board Nat Res Council USA Spec Rep 176:34–80

    Google Scholar 

  • Rock BN, Hoshizaki T, Jr Miller (1988) Comparison of in-situ and airborne spectral measurements of the blue-shift associated with forest decline. Remote Sens Environ 24:109–127

    Article  Google Scholar 

  • Rockwell BW, Hofstra AH (2008) Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data, implications for geologic mapping and mineral resource investigations in well-studied and frontier areas. Geosphere 4(1):218–246

    Article  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002

    Article  Google Scholar 

  • Rothery DA, Francis PW, Wood CA (1988) Volcano monitoring using short wavelength IR data from satellites. J Geophys Res 93(B7):7993–8008

    Article  Google Scholar 

  • Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great Plains with ERTS. Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, NASA SP-351, Greenbelt, pp 309–317

    Google Scholar 

  • Rowan LC, Bowers TL (1995) Analysis of linear features mapped in Landsat thematic mapper and side-Iooking radar images of the Reno, Nevada-California 1° × 2° quadrangle: implications of mineral resource studies. Photogram Eng Remote Sens 61:749–759

    Google Scholar 

  • Rowan LC, Mars JC (2003) Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sens Environ 84:350–366

    Article  Google Scholar 

  • Rowan LC, Wetlaufer PH, Goetz AFH, Billingsley FC, Stewart JH (1974) Discrimination of rock types and detection of hydrothemally alerted areas in south-central Nevada by use of computer-enhanced ERTS images. USGS Prof Pap 883:35p

    Google Scholar 

  • Rowan LC, Goetz AFH, Ashley RP (1977) discrimination of hydrothermally altered and unaltered rocks in visible and near-infrared multispectral images. Geophysics 42:522–535

    Article  Google Scholar 

  • Rowan LC, Watson K, Crowley JK, Anton-Pancheco C, Gumiel P, Kingston MJ, Miller SH, Bowers TL (1993) Mapping lithologies in the Iron Hill, Colorado, carbonatite alkalic igneous rock complex using thermal infrared multispectral scanner and airborne visible-infrared imaging spectrometer data. In: Proceedings 9th thematic conference on geology remote sensing, vol I, Env Res Inst Michigan, Ann Arbor, Mich, pp 195–197

    Google Scholar 

  • Rowan LC, Hook SJ, Abrams MJ, Mars JC (2003) Mapping hydrothermally altered rocks at Cuprite, Nevada, using the advanced spaceborne thermal emission and reflection radiometer (ASTER), a new satellite-imaging system. Econ Geol 98(5):1019–1027

    Article  Google Scholar 

  • Rowan LC, Mars JC, Simpson CJ (2005) Lithologic mapping of the Mordor N.T., Australia ultramafic complex by using the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sens Environ 99:105–126

    Article  Google Scholar 

  • Rowan LC, Schmidt RG, Mars JC (2006) Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan, mineralized area based on spectral analysis of ASTER data. Remote Sens Environ 104:74–87

    Article  Google Scholar 

  • Roy SC (1939) Seismometric study. Mem Geol Surv India 73:49–75

    Google Scholar 

  • Roy Chowdhary MK, Das Gupta SP (1965) Ore localization in Khetri copper belt. Econ Geol 60:69–88

    Article  Google Scholar 

  • Ruiz-Armenta JR, Prol-Ledesma RM (1998) Techniques for enhancing the spectral response of hydrothermal alteration minerals in thematic mapper images of Central Mexico. Int J Remote Sens 19(10):1981–2000

    Article  Google Scholar 

  • Sabine C, Realmuto VJ, Taranik JV (1994) Quantitative estimation of granitoid composition from thermal infrared multispectral scanner (TIMS) data, Desolation Wilderness, northern Sierra Nevada, Califomia. J Geophys Res 99(B3):4261–4271

    Article  Google Scholar 

  • Sabins FF Jr (1983) Geologic interpretation of space shuttle radar images of Indonesia. Am Assoc Petrol Geol Bull 67:2076–2099

    Google Scholar 

  • Sabins FF Jr (1997) Remote sensing-principles and interpretation, 3rd edn. Freeman & Co, NY

    Google Scholar 

  • Sabins FF Jr (2007) Remote sensing: principles and interpretation, 4th edn. Waveland Press, Long Grove, 512 p

    Google Scholar 

  • Saha AK, Gupta RP, Arora MK (2002) GIS-based landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas. Int J Remote Sens 23(2):357–369

    Article  Google Scholar 

  • Saini V, Gupta RP, Arora MK (2015) Spatio-temporal pattern of eco-environmental parameters in Jharia coalfield, India. In: Michel U et al (eds) Proceedings SPIE 96441H, Earth resources and environmental remote sensing/GIS applications VI, 21–24 Sept 2015, Toulouse, France. doi:10.1117/12.2196645

  • Saini V, Arora MK, Gupta RP (2016) Relationship between surface temperature and SAVI using Landsat data in a coal mining area in India. In: Khanbilvardi R, Ganju A, Rajawat AS, Chen JM (eds) Land surface and cryosphere remote sensing III, Proceedings SPIE Asia Pacific Remote Sensing, 4–7 April 2016, New Delhi. doi:10.1117/12.2228094

  • Samadder RK, Kumar S, Gupta RP (2007) Conjunctive use of well-log and remote sensing data for interpreting shallow aquifer geometry in Ganga Plains. J Geol Soc India 69:925–932

    Google Scholar 

  • Sander P (2007) Lineaments in groundwater exploration: a review of applications and limitations. Hydrogeol J 15:71–74

    Article  Google Scholar 

  • Saraf AK, Choudhury PR (1998) Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. Int J Remote Sens 19:1825–1841

    Article  Google Scholar 

  • Saraf AK, Prakash A, Sengupta S, Gupta RP (1995) Landsat-TM data for estimating ground temperature and depth of subsurface coal fire in the Jharia coalfield, India. Int J Remote Sens 16(12):2111–2124

    Article  Google Scholar 

  • Saunders DF, Burson KR, Thompson CK (1999) Model for hydrocarbon microseepage and related near-surface alterations. Am Assoc Petrol Geol Bull 83:170–185

    Google Scholar 

  • Schumacher D (1996) Hydrocarbon-induced alteration of soils and sediments. In: Schumacher D, Abrams MA (eds) Hydrocarbon migration and its near surface expression. Am Assoc Petrol Geol Mem 66:71–89

    Google Scholar 

  • Seeber L, Annbruster JG, Quitmeyer RC (1981) Seismicity and continental subduction in the Himalayan arc. Inter Union Commission on Geodynamics, Working Group 6:215–242

    Google Scholar 

  • Sen D, Sen S (1983) Post-Neogene tectonism along the Aravalli range, Rajasthan, India. Tectonophysics 93:75–98

    Article  Google Scholar 

  • Sharma RP (1977) The role of ERTS-l multispectral imagery in the elucidation of tectonic framework and economic potentials of Kumaun and Simla Himalaya. Himal Geol 7:77–99

    Google Scholar 

  • Sharma RS (1988) Patterns of metamorphism in the Precambrian rocks of the Aravalli mountain belt. Mem Geol Soc Ind 7:33–75

    Google Scholar 

  • Shekhar S, Pandey AC (2015) Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques. Geocarto Int 30(4):402–421

    Article  Google Scholar 

  • Shi P, Fu B, Ninomiya Y, Sun J, Li Y (2012) Multispectral remote sensing mapping for hydrocarbon seepage-induced lithologic anomalies in the Kuqa foreland basin, south Tian Shan. J Asian Earth Sci 46:70–77

    Article  Google Scholar 

  • Shimamura Y, Izumi T, Matsumaya H (2006) Evaluation of a useful method to identify snow-covered areas under vegetation—comparisons among a newly proposed snow index, normalized difference snow index and visible reflectance. Int J Rem Sens 27(21):4867–4884

    Article  Google Scholar 

  • Short NM, Blair RW Jr (eds) (1986) Geomorphology from space. NASA SP-486 US Govt Printing Office, Washington, DC

    Google Scholar 

  • Shukla A, Arora MK, Gupta RP (2010) Synergistic approach for mapping debris-covered glaciers using optical-thermal remote sensing data with inputs from geomorphometric parameters. Remote Sens Environ 114:1378–1387

    Article  Google Scholar 

  • Siegal BS (1977) Significance of operator variation and the angle of illumination in lineament analysis on synoptic images. Mod Geol 6:75–85

    Google Scholar 

  • Singhal BBS, Gupta RP (2010) Applied hydrogeology of fractured rocks, 2nd edn. Springer, Dordrecht, 408p

    Google Scholar 

  • Singhroy VH, Kruse FA (1991) Detection of metal stress in boreal forest species using the 0.67 µm chlorophyll absorption band. In: Proceedings 8th thematic conference geology remote sensing, vol I. Env Res Inst Michigan, Ann Arbor, Mich, pp 361–372

    Google Scholar 

  • Sinha PR (1986) Mine fires in Indian coalfields. Energy 11(11/12):1147–1154

    Article  Google Scholar 

  • Slavecki RJ (1964) Detection and location of subsurface coal fire. In: Proceedings of the 3rd symposium, remote sensing environment, University of Michigan, Ann Arbor, MI, 14–16 Oct 1964, pp 537–547

    Google Scholar 

  • Smirnov V (1976) Geology of mineral deposits. Mir, Moscow

    Google Scholar 

  • Solomon S, Quiel F (2006) Groundwater study using remote sensing and geographic information systems (GIS) in the central highlands of Eritrea. Hydrogeol J 14:1029–1041

    Article  Google Scholar 

  • Stanton RL (1972) Ore petrology. McGraw Hill, New York, 713 p

    Google Scholar 

  • Sun Q, Zhang L, Ding X, Hu J, Liang H (2015a) Investigation of slow-moving landslides from ALOS/PALSAR images with TCPInSAR: a case study of Oso, USA. Remote Sens 7:72–88

    Article  Google Scholar 

  • Sun Q, Zhang L, Ding XL, Hu J, Li ZW, Zhu JJ (2015b) Slope deformation prior to Zhouqu, China landslide from InSAR time series analysis. Remote Sens Environ 156:45–57

    Article  Google Scholar 

  • Tam VT, De Smedt F, Batelaan O, Dassargues A (2004) Study on the relationship between lineaments and borehole specific capacity in a fractured and karstified limestone area in Vietnam. Hydrogeol J 12:662–673

    Article  Google Scholar 

  • Taschner S, Ranzi R (2002) Comparing opportunities of Landsat-TM and ASTER data for monitoring a debris covered glacier in the Italian Alps within the GLIMS project. In: Proceedings international geoscience remote sensing symposium (IGARSS 2002) (IEEE), 24–28 June 2002, vol 2. Toronto, Canada, Piscataway, NJ, pp 1044–1046

    Google Scholar 

  • Thomas IL, Howorth R, Eggers A, Fowler ADW (1981) Textural enhancement of a circular geological feature. Photogramm Eng Remote Sens 47:89–91

    Google Scholar 

  • Thornbury WD (1978) Principles of geomorphology, 2nd edn. Wiley, New York

    Google Scholar 

  • Thum L, De Paoli R (2015) 2D and 3D GIS-based geological and geomechanical survey during tunnel excavation. Eng Geol 192:19–25

    Article  Google Scholar 

  • Todd DK, Mays LW (2005) Groundwater hydrology, 3rd edn. Wiley, NJ

    Google Scholar 

  • Valdiya KS (2017) Prehistoric River Saraswati. Springer, Western India

    Book  Google Scholar 

  • Van der Meer F, Van Dijk P, Van der Werff H, Yang H (2002) Remote sensing and petroleum seepage: a review and case study. Terra Nova 14:1–17

    Article  Google Scholar 

  • van Westen CJ (1994) GIS in landslide hazard zonation: a review, with examples from the Andes of Columbia. In: Price M, Heywood I (eds) Mountain environments and geographic information system. Taylor & Francis, Basingstoke, pp 135–165

    Google Scholar 

  • Velosky JC, Stern RJ, Johnson PR (2003) Geological control of massive sulfide mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia, inferences from orbital remote sensing and field studies. Precambr Res 123(2–4):235–247

    Article  Google Scholar 

  • Venkataraman G, Singh G (2011) Radar application in snow, ice and glaciers. In: Singh VP, Singh P, Haritashya UK (eds) Encyclopedia of snow, ice and glaciers. Dordrecht, Springer, pp 883–903

    Google Scholar 

  • Vincent RK (1997) Fundamentals of Geological and Environmental Remote Sensing. Prentice Hall

    Google Scholar 

  • Vizy KN (1974) Detecting and monitoring oil slicks with aerial photos. Photogramm Eng 40:697–708

    Google Scholar 

  • Voss KA et al (2013) Groundwater depletion in the Middle-East with GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour Res 49:904–914

    Article  Google Scholar 

  • Walker AS (1986) Eolian landforms. In: Short NM, Blair RW Jr (eds) Geomorphology from space, NASA SP-486, US Govt Printing Office, Washington, DC, pp 447–520

    Google Scholar 

  • Wang J, Li W (2003) Comparison of methods of snow cover mapping by analyzing the solar spectrum of satellite remote sensing data in China. Int J Remote Sens 24(21):4129–4136

    Google Scholar 

  • Wang et al (2015) 3D geological modeling for prediction of subsurface Mo targets in the Luanchuan district, China. Ore Geol Rev 71:592–610

    Article  Google Scholar 

  • Warren SG, Wiscombe W (1980) A model for the spectral albedo of snow, II, snow containing atmospheric aerosols. J Atmos Sci 37:2734–2745

    Article  Google Scholar 

  • Waters P, Greenbaum D, Smart PL, Osmaston H (1990) Applications of remote sensing to groundwater hydrology. Remote Sens Rev 4(2):223–264

    Article  Google Scholar 

  • Watson K (1975) Geologic applications of thermal infrared images. Proc IEEE 63(1):128–137

    Article  Google Scholar 

  • Watson K, Rowan LC, Bowers TL, Anton-Pacheco C, Gumiel P, Miller SH (1996) Lithologic analysis from multispectral thermal infrared data of the alkalic rock complex at Tron Hill, Colorado. Geophysics 61:706–721

    Article  Google Scholar 

  • Wieczorek GF (1984) Preparing a detailed landslide-inventory map for hazard evaluation and reduction. Bull Assoc Eng Geol 21(3):337–342

    Google Scholar 

  • Wise DU (1982) Linesmanship and practice of linear geo-art. Geol Soc Am Bull 93:886–888

    Article  Google Scholar 

  • Wright R, Flynn L, Garbeil H, Harris A, Pilger E (2004) MODVOLC: Near-real-time thermal monitoring of global volcanism. J Volcano Geother Res 135:29–49

    Article  Google Scholar 

  • Xiao X, Shen Z, Qin X (2001) Assessing the potential of VEGETATION sensor data for mapping snow and ice cover: a normalized difference snow and ice index. Int J Remote Sens 22(13):2479–2487

    Article  Google Scholar 

  • Xiao K, Li N, Porwal A, Holden E, Bagas L, Lu Y (2015) GIS-based 3D prospectivity mapping: a case study of Jiama copper-polymetallic deposit in Tibet, China. Ore Geol Rev 71:611–632

    Article  Google Scholar 

  • Yamaguchi Y, Kahle AB, Tsu H, Kawakami T, Pniel M (1998) Overview of advanced spaceborne thermal emission and reflection radiometer (ASTER). IEEE Trans Geosci Remote Sens 36(4):1062–1071

    Article  Google Scholar 

  • Yeh HF, Lee CH, Hsu KC, Chang PH (2009) GIS for the assessment of the groundwater recharge potential zone. Environ Geol 58:185–195

    Article  Google Scholar 

  • Yeh HF, Cheng YS, LinHI Lee CH (2016) Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustain Environ Res 26(1):33–43

    Article  Google Scholar 

  • Yue H, Liu G, Guo H, Li X, Kang Z, Wang R, Zhong X (2011) Coal mining induced land subsidence monitoring using multiband spaceborne differential interferometric synthetic aperture radar data. J Appl Remote Sens 5–1:53518–53529. doi:10.1117/1.3571038

    Article  Google Scholar 

  • Zhang XM (1998) Coal Fires in North China-detection, monitoring and prediction using remote sensing data. ITC Publ No 58, l33p

    Google Scholar 

  • Zheng K, Zhou F, Liu P, Kan P (2010) Study on 3D geological model of highway tunnels modeling method. J Geogr Inf Syst 2:6–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi P. Gupta .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, R.P. (2018). Geological Applications. In: Remote Sensing Geology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55876-8_19

Download citation

Publish with us

Policies and ethics