Advertisement

Chemische Eigenschaften und Prozesse

  • Wulf Amelung
  • Hans-Peter Blume
  • Heiner Fleige
  • Rainer Horn
  • Ellen Kandeler
  • Ingrid Kögel-Knabner
  • Ruben Kretzschmar
  • Karl Stahr
  • Berndt-Michael Wilke
Chapter

Zusammenfassung

Viele Regelungsfunktionen von Böden beruhen auf biogeochemischen Prozessen und werden deshalb von den chemischen Eigenschaften der Böden beeinflusst. Beispiele hierfür sind die Speicherung und Nachlieferung von Nährstoffen, die Sorption und der Abbau von Schadstoffen sowie die Pufferung von Säureeinträgen. Chemische Prozesse an Grenzflächen sind dabei von herausragender Bedeutung. Etwa 40–60 % des Bodenvolumens bestehen aus Poren, die je nach aktueller Bodenfeuchte mit Wasser (Bodenlösung) und Gasen (Bodenluft) gefüllt sein können. Die feste Bodensubstanz besteht überwiegend aus Mineralen und kleineren Anteilen organischer Substanzen. In diesem porösen System aus mineralischen und organischen Bodenpartikeln, Gasen, wässrigen Lösungen und Organismen bilden sich enorm große und chemisch reaktive Grenzflächen aus. An diesen Grenzflächen können Ionen und Moleküle adsorbiert, komplexiert, oxidiert, reduziert, ausgefällt oder chemisch umgewandelt werden. Dieses Kapitel bietet eine Einführung in wichtige chemische Eigenschaften und Prozesse, die das Verhalten von Nähr- und Schadstoffen in Böden kontrollieren.

Literatur

  1. Berner, E. & R. Berner: Global Environment: Water, Air, and Geochemical Cycles, Prentice Hall, Upper Saddle River, New Jersey (1996)Google Scholar
  2. Bradford, G.R., Bair, F.L., Hunsacker, V.: Trace and major element contents of soil saturation extracts. Soil Sci. 112,225–230 (1971)CrossRefGoogle Scholar
  3. Brown, B.A., Munsell, R.I., Holt, R.F., King, A.V.: Soil reactions at various depths as influenced by time since application and amounts of limestone. Soil Sci. Soc. Am. Proc. 20,518–522 (1956)CrossRefGoogle Scholar
  4. Campbell, D.J., Beckett, P.H.T.: The soil solution in a soil treated with digested sewage sludge. J. Soil Sci. 39,283–298 (1988)CrossRefGoogle Scholar
  5. Christl, I., Kretzschmar, R.: Competitive sorption of copper and lead at the oxide-water interface: Implications for surface site density. Geochim. Cosmochim. Acta 63,2929–2938 (1999)CrossRefGoogle Scholar
  6. Christl, I., Knicker, H., Kogel-Knabner, I., Kretzschmar, R.: Chemical heterogeneity of humic substances: characterization of size fractions obtained by hollow-fibre ultrafiltration. Eur J. Soil Sci. 51,617–625 (2000)CrossRefGoogle Scholar
  7. Davis, J.A., Kent, D.B.: Surface complexation modeling in aqueous geochemistry. In: Hochella, M.F.J., White, A.F. (Hrsg.) Mineral-Water Interface Geochemistry. Mineralogical Society of America, Washington (1990)Google Scholar
  8. Essington, M.E.: Soil and Water Chemistry: An Integrative Approach. CRC Press, Boca Raton (2004)CrossRefGoogle Scholar
  9. Fieldes, M., Schofield, R.K.: Mechanisms of ion adsorption by inorganic soil colloids. New Zealand J. Sci. 3,563–679 (1960)Google Scholar
  10. Fischer, L., Brummer, G.W., Barrow, N.J.: Observations and modelling of the reactions of 10 metals with goethite: adsorption and diffusion processes. Eur. J. Soil Sci. 58,1304–1315 (2007)CrossRefGoogle Scholar
  11. Furrer, G., Stumm, W.: The coordination chemistry of weathering: I. Dissolution kinetics of δ-Al2O3 and BeO. Geochim Cosmochim. Acta 50,1847–1860 (1986)CrossRefGoogle Scholar
  12. Goldberg, S.: Use of surface complexation models in soil chemical systems. Adv. Agron. 47,233–329 (1992)CrossRefGoogle Scholar
  13. Hiemstra, T., Van Riemsdijk, W.H.: A surface structural approach to ion adsorption: The charge distribution (CD) model. J. Colloid Interface Sci. 179,488–508 (1996)CrossRefGoogle Scholar
  14. Kreuzer, K.: Effects of forest liming on soil processes. Plant Soil 168,447–470 (1995)CrossRefGoogle Scholar
  15. Langmuir, D.: Aqueous Environmental Geochemistry, Prentice Hall, Upper Saddle River, New Jersey (1997)Google Scholar
  16. Okazaki, M.K., Sakaidani, K., Saigusa, T., Sakaida, N.: Ligand exchange of oxyanions on synthetic hydrated oxides of iron and aluminum. Soil Sci. Plant Nutr. 35,337–346 (1989)CrossRefGoogle Scholar
  17. Raij, B. van, Peech, M.: Electrochemical properties of some Oxisols and Alfisols of the tropics. Soil Sci. Soc. Am. Proc. 36,587–593 (1972)CrossRefGoogle Scholar
  18. Robarge, W.P.: Precipitation/dissolution reactions in soils. In: Sparks, D.L. (Hrsg.) Soil Physical Chemistry, 2. Aufl. CRC Press, Boca Raton (1999)Google Scholar
  19. Stumm, W.: Chemistry of the Solid-Water interface. Wiley, New York (1992)Google Scholar
  20. Stumm, W., Morgan, J.J.: Aquatic Chemistry: chemical equilibria and rates in natural waters. Wiley, New York (1996)Google Scholar
  21. Suarez, D.L.: Thermodynamics of the soil solution. In: Sparks, D.L. (Hrsg.) Soil Physical Chemistry, 2. Aufl. CRC Press, Boca Raton (1999)Google Scholar
  22. Tipping, E.: Cation Binding by Humic Substances. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  23. Walthert, L., S. Zimmermann, P. Blaser & P. Lüscher: Waldböden der Schweiz. Bd. 1. Grundlagen und Region Jura. Hep Verlag, Bern (2004)Google Scholar

Weiterführende Literatur

  1. Arai, Y., Sparks, D.L.: Phosphate reaction dynamics in soils and soil components: A multiscale approach. Adv. Agron. 94,135–179 (2007)CrossRefGoogle Scholar
  2. Bartlett, R.J., James, B.R.: Redox chemistry of soils. Adv. Agron. 50,151–208 (1993)CrossRefGoogle Scholar
  3. Berner, E. & R. Berner: Global Environment: Water, Air, and Geochemical Cycles, Prentice Hall, Upper Saddle River, New Jersey (1996)Google Scholar
  4. Bolan, N.S., Naidu, R., Syers, J.K., Tillman, R.W.: Surface charge and solute interactions in soils. Adv. Agron. 67,87–140 (1999)CrossRefGoogle Scholar
  5. Bolan, N.S., Adriano, D.C., Curtin, D.: Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Adv. Agron. 78,215–272 (2003)CrossRefGoogle Scholar
  6. Brown Jr, G.E., Parks, G.A., O'Day, P.A.: Sorption at mineral-water interfaces: Macroscopic and microscopic perspectives. In: Vaughan, D.J., Pattrick, R.A.D. (Hrsg.) Mineral Surfaces. Chapman & Hall, London (1995)Google Scholar
  7. Carrillo-Gonzalez, R., Simunek, J., Sauve, S., Adriano, D.: Mechanisms and pathways of trace element mobility in soils. Adv. Agron. 91,111–178 (2006)CrossRefGoogle Scholar
  8. Chorover, J., Kretzschmar, R., Garcia-Pichel, F., Sparks, D.L.: Soil biogeochemical processes within the critical zone. Elements 3,321–326 (2007)CrossRefGoogle Scholar
  9. Davis, J.A., Kent, D.B.: Surface complexation modeling in aqueous geochemistry. In: Hochella, M.F.J., White, A.F. (Hrsg.) Mineral-Water Interface Geochemistry. Mineralogical Society of America, Washington (1990)Google Scholar
  10. Essington, M.E.: Soil and Water Chemistry: An Integrative Approach. CRC Press, Boca Raton (2004)CrossRefGoogle Scholar
  11. Evangelou, V.P.: Environmental Soil and Water Chemistry: Principles and Applications. Wiley, New York (1998)Google Scholar
  12. Fageria, N.K., Baligar, V.C.: Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production. Adv. Agron. 99,345–399 (2008)CrossRefGoogle Scholar
  13. Fendorf, S.E., Sparks, D.L., Lamble, G.M., Kelley, M.J.: Applications of X-ray-absorption fine structure spectroscopy to soils. Soil Sci. Soc. Am. J. 58,1583–1595 (1994)CrossRefGoogle Scholar
  14. Fiedler, S., Vepraskas, M.J., Richardson, J.L.: Soil redox potential: Importance, field measurements, and observations. Adv. Agron. 94,1–54 (2007)CrossRefGoogle Scholar
  15. Ford, R.G., Scheinost, A.C., Sparks, D.L.: Frontiers in metal sorption/precipitation mechanisms on soil mineral surfaces. Adv. Agron. 74,41–62 (2001)CrossRefGoogle Scholar
  16. Goldberg, S.: Use of surface complexation models in soil chemical systems. Adv. Agron. 47,233–329 (1992)CrossRefGoogle Scholar
  17. Hiradate, S., Ma, J.F., Matsumoto, H.: Strategies of plants to adapt to mineral stresses in problem soils. Adv. Agron. 96,65–132 (2007)CrossRefGoogle Scholar
  18. Hochella, M.F.J., White, A.F. (Hrsg.): Mineral-Water Interface Geochemistry. Mineralogical Society of America, Washington (1990)Google Scholar
  19. Hochella, M.F., Lower, S.K., Maurice, P.A., Penn, R.L., Sahai, N., Sparks, D.L., Twining, B.S.: Nanominerals, mineral nanoparticles, and Earth systems. Science 319,1631–1635 (2008)CrossRefGoogle Scholar
  20. Huang, P.M.: Soil mineral-organic matter-microorganism interactions: Fundamentals and impacts. Adv. Agron. 82,391–472 (2004)CrossRefGoogle Scholar
  21. Jardine, P.M.: Influence of coupled processes on contaminant fate and transport in subsurface environments. Adv. Agron. 99,1–99 (2008)CrossRefGoogle Scholar
  22. Johnston, C.T., Tombacz, E.: Surface chemistry of soil minerals. In: Dixon, J.B., Schulze, D.G. (Hrsg.) Soil Minerals with Environmental Applications. Soil Science Society of America, Madison, Wisconsin (2002)Google Scholar
  23. Karathanasis, A.D.: Mineral equilibria in environmental soil systems. In: Dixon, J.B., Schulze, D.G. (Hrsg.) Soil Mineralogy with Environmental Applications. Soil Sience Society of America, Madison, Wisconsin (2002)Google Scholar
  24. Kraemer, S.M., Crowley, D.E., Kretzschmar, R.: Geochemical aspects of phytosiderophore-promoted iron acquisition by plants. Adv. Agron. 91,1–46 (2006)CrossRefGoogle Scholar
  25. Kretzschmar, R., Schaefer, T.: Metal retention and transport on colloidal particles in the environment. Elements 1,205–210 (2005)CrossRefGoogle Scholar
  26. Kretzschmar, R., Borkovec, M., Grolimund, D., Elimelech, M.: Mobile subsurface colloids and their role in contaminant transport. Adv. Agron. 66,121–193 (1999)CrossRefGoogle Scholar
  27. Langmuir, D.: Aqueous Environmental Geochemistry, Prentice Hall, Upper Saddle River, New Jersey (1997)Google Scholar
  28. Limousin, G., Gaudet, J.P., Charlet, L., Szenknect, S., Barthes, V., Krimissa, M.: Sorption isotherms: A review on physical bases, modeling and measurement. Appl. Geochem. 22,249–275 (2007)CrossRefGoogle Scholar
  29. Lindsay, W.L.: Chemical Equilibria in Soils. Wiley, New York (1979)Google Scholar
  30. Manthey, J.A., Crowley, D.E., Luster, D.G. (Hrsg.): Biochemistry of Metal Micronutrients in the Rhizosphere. Lewis Publishers, Boca Raton (1994)Google Scholar
  31. Marschner, H.: Mineral Nutrition of Higher Plants, 2. Aufl. Academic Press, London (1995)Google Scholar
  32. Maurice, P.A., Hochella, M.F.: Nanoscale particles and processes: A new dimension in soil science. Adv. Agron. 100,123–153 (2008)CrossRefGoogle Scholar
  33. McBride, M.B.: Surface chemistry of soil minerals. In: Dixon, J.B., Weed, S.B. (Hrsg.) Minerals in Soil Environments, 2. Aufl. Soil Science Society of America, Madison (1989)Google Scholar
  34. McBride, M.B.: Environmental Chemistry of Soils. Oxford University Press, New York (1994)Google Scholar
  35. Merdy, P., Koopal, L.K., Huclier, S.: Modeling metal-particle interactions with an emphasis on natural organic matter. Environ. Sci. Technol. 40,7459–7466 (2006)CrossRefGoogle Scholar
  36. Murad, E., Fischer, W.R.: The geobiochemical cycle of iron. In: Stucki, J.W., Goodman, B.A., Schwertmann, U. (Hrsg.) Iron in Soils and Clay Minerals. Kluwer Academic Publishers, Dordrecht (1988)Google Scholar
  37. Oze, C., Fendorf, S., Bird, D.K., Coleman, R.G.: Chromium geochemistry of serpentine soils. Intern. Geol. Rev. 46,97–126 (2004)CrossRefGoogle Scholar
  38. Qafoku, N.P., Van Ranst, E., Noble, A., Baert, G.: Variable charge soils: Their mineralogy, chemistry and management. Adv. Agron. 84,159–215 (2004)CrossRefGoogle Scholar
  39. Rai, D., Kittrick, J.A.: Mineral equilibria and the soil system. In: Dixon, J.B., Weed, S.B. (Hrsg.) Minerals in Soil Environments, 2. Aufl. Soil Science Society of America, Madison (1989)Google Scholar
  40. Ritchie, G.S.P., Sposito, G.: Speciation in soils. In: Ure, A.M., Davidson, C.M. (Hrsg.) Chemical Speciation in the Environment. Blackie and Son, Glasgow (1995)Google Scholar
  41. Robarge, W.P.: Precipitation/dissolution reactions in soils. In: Sparks, D.L. (Hrsg.) Soil Physical Chemistry, 2. Aufl. CRC Press, Boca Raton (1999)Google Scholar
  42. Robin, A., Vansuyt, G., Hinsinger, P., Meyer, J.M., Briat, J.F., Lemanceau, P.: Iron dynamics in the rhizoshere: Consequences for plant health and nutrition. Adv. Agron. 99,183–225 (2008)CrossRefGoogle Scholar
  43. Schnitzer, M.: A lifetime perspective on the chemistry of soil organic matter. Adv. Agron. 68,1–58 (2000)Google Scholar
  44. Schwarzenbach, R.P., Gschwend, P.M., Imboden, D.M.: Environmental Organic Chemistry, 2. Aufl. Wiley, Hoboken (2003)Google Scholar
  45. Sparks, D.L.: Elucidating the fundamental chemistry of soils: past and recent achievements and future frontiers. Geoderma 100,303–319 (2001)CrossRefGoogle Scholar
  46. Sparks, D.L.: Environmental Soil Chemistry, 2. Aufl. Academic Press, San Diego (2003)Google Scholar
  47. Sposito, G.: The Chemistry of Soils. Oxford University Press, New York (1989)Google Scholar
  48. Sposito, G.: Chemical Equilibria and Kinetics in Soils. Oxford University Press, New York (1994)Google Scholar
  49. Sposito, G. (Hrsg.): The Environmental Chemistry of Aluminum, 2. Aufl. CRC Press, Boca Raton (1995)Google Scholar
  50. Sposito, G.: The Surface Chemistry of Natural Particles. Oxford University Press, New York (2004)Google Scholar
  51. Stevenson, F.J.: Humus Chemistry: Genesis, Composition, Reactions, 2. Aufl. Wiley, New York (1994)Google Scholar
  52. Strawn, D.G., Bohn, H.L., O'Connor, G.A.: Soil Chemistry, 4. Aufl. Wiley-Blackwell (2015)Google Scholar
  53. Stumm, W.: Chemistry of the Solid-Water interface. Wiley, New York (1992)Google Scholar
  54. Stumm, W., Morgan, J.J.: Aquatic Chemistry: chemical equilibria and rates in natural waters. Wiley, New York (1996)Google Scholar
  55. Suarez, D.L.: Thermodynamics of the soil solution. In: Sparks, D.L. (Hrsg.) Soil Physical Chemistry, 2. Aufl. CRC Press, Boca Raton (1999)Google Scholar
  56. Sumner, M.E. (Hrsg.): Handbook of Soil Sciences. CRC Press, Boca Raton (2000)Google Scholar
  57. Sutton, R., Sposito, G.: Molecular structure in soil humic substances: The new view. Environ. Sci. Technol. 39,9009–9015 (2005)CrossRefGoogle Scholar
  58. Tipping, E.: Cation binding by humic substances. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Wulf Amelung
    • 1
  • Hans-Peter Blume
    • 2
  • Heiner Fleige
    • 3
  • Rainer Horn
    • 2
  • Ellen Kandeler
    • 4
  • Ingrid Kögel-Knabner
    • 5
  • Ruben Kretzschmar
    • 6
  • Karl Stahr
    • 4
  • Berndt-Michael Wilke
    • 7
  1. 1.INRES – Institut für Nutzpflanzenwissenschaften und RessourcenschutzUniversität BonnBonnDeutschland
  2. 2.Institut für Pflanzenernährung und BodenkundeUniversität KielKielDeutschland
  3. 3.Institut für Pflanzenernährung und BodenkundeUniversität KielKielDeutschland
  4. 4.Institut für Bodenkunde und StandortslehreUniversität HohenheimStuttgartDeutschland
  5. 5.Lehrstuhl für BodenkundeTU MünchenFreising-WeihenstephanDeutschland
  6. 6.Institut für Biogeochemie und SchadstoffdynamikETH ZürichZürichSchweiz
  7. 7.Institut für ÖkologieTU BerlinBerlinDeutschland

Personalised recommendations