Skip to main content

Chemische Eigenschaften und Prozesse

  • Chapter
  • First Online:
Scheffer/Schachtschabel Lehrbuch der Bodenkunde

Zusammenfassung

Viele Regelungsfunktionen von Böden beruhen auf biogeochemischen Prozessen und werden deshalb von den chemischen Eigenschaften der Böden beeinflusst. Beispiele hierfür sind die Speicherung und Nachlieferung von Nährstoffen, die Sorption und der Abbau von Schadstoffen sowie die Pufferung von Säureeinträgen. Chemische Prozesse an Grenzflächen sind dabei von herausragender Bedeutung. Etwa 40–60 % des Bodenvolumens bestehen aus Poren, die je nach aktueller Bodenfeuchte mit Wasser (Bodenlösung) und Gasen (Bodenluft) gefüllt sein können. Die feste Bodensubstanz besteht überwiegend aus Mineralen und kleineren Anteilen organischer Substanzen. In diesem porösen System aus mineralischen und organischen Bodenpartikeln, Gasen, wässrigen Lösungen und Organismen bilden sich enorm große und chemisch reaktive Grenzflächen aus. An diesen Grenzflächen können Ionen und Moleküle adsorbiert, komplexiert, oxidiert, reduziert, ausgefällt oder chemisch umgewandelt werden. Dieses Kapitel bietet eine Einführung in wichtige chemische Eigenschaften und Prozesse, die das Verhalten von Nähr- und Schadstoffen in Böden kontrollieren.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Berner, E. & R. Berner: Global Environment: Water, Air, and Geochemical Cycles, Prentice Hall, Upper Saddle River, New Jersey (1996)

    Google Scholar 

  • Bradford, G.R., Bair, F.L., Hunsacker, V.: Trace and major element contents of soil saturation extracts. Soil Sci. 112,225–230 (1971)

    Article  CAS  Google Scholar 

  • Brown, B.A., Munsell, R.I., Holt, R.F., King, A.V.: Soil reactions at various depths as influenced by time since application and amounts of limestone. Soil Sci. Soc. Am. Proc. 20,518–522 (1956)

    Article  CAS  Google Scholar 

  • Campbell, D.J., Beckett, P.H.T.: The soil solution in a soil treated with digested sewage sludge. J. Soil Sci. 39,283–298 (1988)

    Article  CAS  Google Scholar 

  • Christl, I., Kretzschmar, R.: Competitive sorption of copper and lead at the oxide-water interface: Implications for surface site density. Geochim. Cosmochim. Acta 63,2929–2938 (1999)

    Article  CAS  Google Scholar 

  • Christl, I., Knicker, H., Kogel-Knabner, I., Kretzschmar, R.: Chemical heterogeneity of humic substances: characterization of size fractions obtained by hollow-fibre ultrafiltration. Eur J. Soil Sci. 51,617–625 (2000)

    Article  CAS  Google Scholar 

  • Davis, J.A., Kent, D.B.: Surface complexation modeling in aqueous geochemistry. In: Hochella, M.F.J., White, A.F. (Hrsg.) Mineral-Water Interface Geochemistry. Mineralogical Society of America, Washington (1990)

    Google Scholar 

  • Essington, M.E.: Soil and Water Chemistry: An Integrative Approach. CRC Press, Boca Raton (2004)

    Book  Google Scholar 

  • Fieldes, M., Schofield, R.K.: Mechanisms of ion adsorption by inorganic soil colloids. New Zealand J. Sci. 3,563–679 (1960)

    Google Scholar 

  • Fischer, L., Brummer, G.W., Barrow, N.J.: Observations and modelling of the reactions of 10 metals with goethite: adsorption and diffusion processes. Eur. J. Soil Sci. 58,1304–1315 (2007)

    Article  CAS  Google Scholar 

  • Furrer, G., Stumm, W.: The coordination chemistry of weathering: I. Dissolution kinetics of δ-Al2O3 and BeO. Geochim Cosmochim. Acta 50,1847–1860 (1986)

    Article  CAS  Google Scholar 

  • Goldberg, S.: Use of surface complexation models in soil chemical systems. Adv. Agron. 47,233–329 (1992)

    Article  CAS  Google Scholar 

  • Hiemstra, T., Van Riemsdijk, W.H.: A surface structural approach to ion adsorption: The charge distribution (CD) model. J. Colloid Interface Sci. 179,488–508 (1996)

    Article  CAS  Google Scholar 

  • Kreuzer, K.: Effects of forest liming on soil processes. Plant Soil 168,447–470 (1995)

    Article  Google Scholar 

  • Langmuir, D.: Aqueous Environmental Geochemistry, Prentice Hall, Upper Saddle River, New Jersey (1997)

    Google Scholar 

  • Okazaki, M.K., Sakaidani, K., Saigusa, T., Sakaida, N.: Ligand exchange of oxyanions on synthetic hydrated oxides of iron and aluminum. Soil Sci. Plant Nutr. 35,337–346 (1989)

    Article  CAS  Google Scholar 

  • Raij, B. van, Peech, M.: Electrochemical properties of some Oxisols and Alfisols of the tropics. Soil Sci. Soc. Am. Proc. 36,587–593 (1972)

    Article  Google Scholar 

  • Robarge, W.P.: Precipitation/dissolution reactions in soils. In: Sparks, D.L. (Hrsg.) Soil Physical Chemistry, 2. Aufl. CRC Press, Boca Raton (1999)

    Google Scholar 

  • Stumm, W.: Chemistry of the Solid-Water interface. Wiley, New York (1992)

    Google Scholar 

  • Stumm, W., Morgan, J.J.: Aquatic Chemistry: chemical equilibria and rates in natural waters. Wiley, New York (1996)

    Google Scholar 

  • Suarez, D.L.: Thermodynamics of the soil solution. In: Sparks, D.L. (Hrsg.) Soil Physical Chemistry, 2. Aufl. CRC Press, Boca Raton (1999)

    Google Scholar 

  • Tipping, E.: Cation Binding by Humic Substances. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  • Walthert, L., S. Zimmermann, P. Blaser & P. Lüscher: Waldböden der Schweiz. Bd. 1. Grundlagen und Region Jura. Hep Verlag, Bern (2004)

    Google Scholar 

Weiterführende Literatur

  • Arai, Y., Sparks, D.L.: Phosphate reaction dynamics in soils and soil components: A multiscale approach. Adv. Agron. 94,135–179 (2007)

    Article  CAS  Google Scholar 

  • Bartlett, R.J., James, B.R.: Redox chemistry of soils. Adv. Agron. 50,151–208 (1993)

    Article  CAS  Google Scholar 

  • Berner, E. & R. Berner: Global Environment: Water, Air, and Geochemical Cycles, Prentice Hall, Upper Saddle River, New Jersey (1996)

    Google Scholar 

  • Bolan, N.S., Naidu, R., Syers, J.K., Tillman, R.W.: Surface charge and solute interactions in soils. Adv. Agron. 67,87–140 (1999)

    Article  CAS  Google Scholar 

  • Bolan, N.S., Adriano, D.C., Curtin, D.: Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Adv. Agron. 78,215–272 (2003)

    Article  CAS  Google Scholar 

  • Brown Jr, G.E., Parks, G.A., O'Day, P.A.: Sorption at mineral-water interfaces: Macroscopic and microscopic perspectives. In: Vaughan, D.J., Pattrick, R.A.D. (Hrsg.) Mineral Surfaces. Chapman & Hall, London (1995)

    Google Scholar 

  • Carrillo-Gonzalez, R., Simunek, J., Sauve, S., Adriano, D.: Mechanisms and pathways of trace element mobility in soils. Adv. Agron. 91,111–178 (2006)

    Article  CAS  Google Scholar 

  • Chorover, J., Kretzschmar, R., Garcia-Pichel, F., Sparks, D.L.: Soil biogeochemical processes within the critical zone. Elements 3,321–326 (2007)

    Article  CAS  Google Scholar 

  • Davis, J.A., Kent, D.B.: Surface complexation modeling in aqueous geochemistry. In: Hochella, M.F.J., White, A.F. (Hrsg.) Mineral-Water Interface Geochemistry. Mineralogical Society of America, Washington (1990)

    Google Scholar 

  • Essington, M.E.: Soil and Water Chemistry: An Integrative Approach. CRC Press, Boca Raton (2004)

    Book  Google Scholar 

  • Evangelou, V.P.: Environmental Soil and Water Chemistry: Principles and Applications. Wiley, New York (1998)

    Google Scholar 

  • Fageria, N.K., Baligar, V.C.: Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production. Adv. Agron. 99,345–399 (2008)

    Article  CAS  Google Scholar 

  • Fendorf, S.E., Sparks, D.L., Lamble, G.M., Kelley, M.J.: Applications of X-ray-absorption fine structure spectroscopy to soils. Soil Sci. Soc. Am. J. 58,1583–1595 (1994)

    Article  CAS  Google Scholar 

  • Fiedler, S., Vepraskas, M.J., Richardson, J.L.: Soil redox potential: Importance, field measurements, and observations. Adv. Agron. 94,1–54 (2007)

    Article  CAS  Google Scholar 

  • Ford, R.G., Scheinost, A.C., Sparks, D.L.: Frontiers in metal sorption/precipitation mechanisms on soil mineral surfaces. Adv. Agron. 74,41–62 (2001)

    Article  CAS  Google Scholar 

  • Goldberg, S.: Use of surface complexation models in soil chemical systems. Adv. Agron. 47,233–329 (1992)

    Article  CAS  Google Scholar 

  • Hiradate, S., Ma, J.F., Matsumoto, H.: Strategies of plants to adapt to mineral stresses in problem soils. Adv. Agron. 96,65–132 (2007)

    Article  CAS  Google Scholar 

  • Hochella, M.F.J., White, A.F. (Hrsg.): Mineral-Water Interface Geochemistry. Mineralogical Society of America, Washington (1990)

    Google Scholar 

  • Hochella, M.F., Lower, S.K., Maurice, P.A., Penn, R.L., Sahai, N., Sparks, D.L., Twining, B.S.: Nanominerals, mineral nanoparticles, and Earth systems. Science 319,1631–1635 (2008)

    Article  CAS  Google Scholar 

  • Huang, P.M.: Soil mineral-organic matter-microorganism interactions: Fundamentals and impacts. Adv. Agron. 82,391–472 (2004)

    Article  CAS  Google Scholar 

  • Jardine, P.M.: Influence of coupled processes on contaminant fate and transport in subsurface environments. Adv. Agron. 99,1–99 (2008)

    Article  CAS  Google Scholar 

  • Johnston, C.T., Tombacz, E.: Surface chemistry of soil minerals. In: Dixon, J.B., Schulze, D.G. (Hrsg.) Soil Minerals with Environmental Applications. Soil Science Society of America, Madison, Wisconsin (2002)

    Google Scholar 

  • Karathanasis, A.D.: Mineral equilibria in environmental soil systems. In: Dixon, J.B., Schulze, D.G. (Hrsg.) Soil Mineralogy with Environmental Applications. Soil Sience Society of America, Madison, Wisconsin (2002)

    Google Scholar 

  • Kraemer, S.M., Crowley, D.E., Kretzschmar, R.: Geochemical aspects of phytosiderophore-promoted iron acquisition by plants. Adv. Agron. 91,1–46 (2006)

    Article  CAS  Google Scholar 

  • Kretzschmar, R., Schaefer, T.: Metal retention and transport on colloidal particles in the environment. Elements 1,205–210 (2005)

    Article  CAS  Google Scholar 

  • Kretzschmar, R., Borkovec, M., Grolimund, D., Elimelech, M.: Mobile subsurface colloids and their role in contaminant transport. Adv. Agron. 66,121–193 (1999)

    Article  CAS  Google Scholar 

  • Langmuir, D.: Aqueous Environmental Geochemistry, Prentice Hall, Upper Saddle River, New Jersey (1997)

    Google Scholar 

  • Limousin, G., Gaudet, J.P., Charlet, L., Szenknect, S., Barthes, V., Krimissa, M.: Sorption isotherms: A review on physical bases, modeling and measurement. Appl. Geochem. 22,249–275 (2007)

    Article  CAS  Google Scholar 

  • Lindsay, W.L.: Chemical Equilibria in Soils. Wiley, New York (1979)

    Google Scholar 

  • Manthey, J.A., Crowley, D.E., Luster, D.G. (Hrsg.): Biochemistry of Metal Micronutrients in the Rhizosphere. Lewis Publishers, Boca Raton (1994)

    Google Scholar 

  • Marschner, H.: Mineral Nutrition of Higher Plants, 2. Aufl. Academic Press, London (1995)

    Google Scholar 

  • Maurice, P.A., Hochella, M.F.: Nanoscale particles and processes: A new dimension in soil science. Adv. Agron. 100,123–153 (2008)

    Article  CAS  Google Scholar 

  • McBride, M.B.: Surface chemistry of soil minerals. In: Dixon, J.B., Weed, S.B. (Hrsg.) Minerals in Soil Environments, 2. Aufl. Soil Science Society of America, Madison (1989)

    Google Scholar 

  • McBride, M.B.: Environmental Chemistry of Soils. Oxford University Press, New York (1994)

    Google Scholar 

  • Merdy, P., Koopal, L.K., Huclier, S.: Modeling metal-particle interactions with an emphasis on natural organic matter. Environ. Sci. Technol. 40,7459–7466 (2006)

    Article  CAS  Google Scholar 

  • Murad, E., Fischer, W.R.: The geobiochemical cycle of iron. In: Stucki, J.W., Goodman, B.A., Schwertmann, U. (Hrsg.) Iron in Soils and Clay Minerals. Kluwer Academic Publishers, Dordrecht (1988)

    Google Scholar 

  • Oze, C., Fendorf, S., Bird, D.K., Coleman, R.G.: Chromium geochemistry of serpentine soils. Intern. Geol. Rev. 46,97–126 (2004)

    Article  Google Scholar 

  • Qafoku, N.P., Van Ranst, E., Noble, A., Baert, G.: Variable charge soils: Their mineralogy, chemistry and management. Adv. Agron. 84,159–215 (2004)

    Article  CAS  Google Scholar 

  • Rai, D., Kittrick, J.A.: Mineral equilibria and the soil system. In: Dixon, J.B., Weed, S.B. (Hrsg.) Minerals in Soil Environments, 2. Aufl. Soil Science Society of America, Madison (1989)

    Google Scholar 

  • Ritchie, G.S.P., Sposito, G.: Speciation in soils. In: Ure, A.M., Davidson, C.M. (Hrsg.) Chemical Speciation in the Environment. Blackie and Son, Glasgow (1995)

    Google Scholar 

  • Robarge, W.P.: Precipitation/dissolution reactions in soils. In: Sparks, D.L. (Hrsg.) Soil Physical Chemistry, 2. Aufl. CRC Press, Boca Raton (1999)

    Google Scholar 

  • Robin, A., Vansuyt, G., Hinsinger, P., Meyer, J.M., Briat, J.F., Lemanceau, P.: Iron dynamics in the rhizoshere: Consequences for plant health and nutrition. Adv. Agron. 99,183–225 (2008)

    Article  CAS  Google Scholar 

  • Schnitzer, M.: A lifetime perspective on the chemistry of soil organic matter. Adv. Agron. 68,1–58 (2000)

    CAS  Google Scholar 

  • Schwarzenbach, R.P., Gschwend, P.M., Imboden, D.M.: Environmental Organic Chemistry, 2. Aufl. Wiley, Hoboken (2003)

    Google Scholar 

  • Sparks, D.L.: Elucidating the fundamental chemistry of soils: past and recent achievements and future frontiers. Geoderma 100,303–319 (2001)

    Article  CAS  Google Scholar 

  • Sparks, D.L.: Environmental Soil Chemistry, 2. Aufl. Academic Press, San Diego (2003)

    Google Scholar 

  • Sposito, G.: The Chemistry of Soils. Oxford University Press, New York (1989)

    Google Scholar 

  • Sposito, G.: Chemical Equilibria and Kinetics in Soils. Oxford University Press, New York (1994)

    Google Scholar 

  • Sposito, G. (Hrsg.): The Environmental Chemistry of Aluminum, 2. Aufl. CRC Press, Boca Raton (1995)

    Google Scholar 

  • Sposito, G.: The Surface Chemistry of Natural Particles. Oxford University Press, New York (2004)

    Google Scholar 

  • Stevenson, F.J.: Humus Chemistry: Genesis, Composition, Reactions, 2. Aufl. Wiley, New York (1994)

    Google Scholar 

  • Strawn, D.G., Bohn, H.L., O'Connor, G.A.: Soil Chemistry, 4. Aufl. Wiley-Blackwell (2015)

    Google Scholar 

  • Stumm, W.: Chemistry of the Solid-Water interface. Wiley, New York (1992)

    Google Scholar 

  • Stumm, W., Morgan, J.J.: Aquatic Chemistry: chemical equilibria and rates in natural waters. Wiley, New York (1996)

    Google Scholar 

  • Suarez, D.L.: Thermodynamics of the soil solution. In: Sparks, D.L. (Hrsg.) Soil Physical Chemistry, 2. Aufl. CRC Press, Boca Raton (1999)

    Google Scholar 

  • Sumner, M.E. (Hrsg.): Handbook of Soil Sciences. CRC Press, Boca Raton (2000)

    Google Scholar 

  • Sutton, R., Sposito, G.: Molecular structure in soil humic substances: The new view. Environ. Sci. Technol. 39,9009–9015 (2005)

    Article  CAS  Google Scholar 

  • Tipping, E.: Cation binding by humic substances. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wulf Amelung .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amelung, W. et al. (2018). Chemische Eigenschaften und Prozesse. In: Scheffer/Schachtschabel Lehrbuch der Bodenkunde. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55871-3_5

Download citation

Publish with us

Policies and ethics