Skip to main content

Energy-Efficient Fast Delivery by Mobile Agents

  • Conference paper
  • First Online:
Book cover Fundamentals of Computation Theory (FCT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10472))

Included in the following conference series:

Abstract

We consider the problem of collaboratively delivering a package from a specified source node s to a designated target node t in an undirected graph \(G=(V,E)\), using k mobile agents. Each agent i starts at time 0 at a node \(p_i\) and can move along edges subject to two parameters: Its weight \(w_i\), which denotes the rate of energy consumption while travelling, and its velocity \(v_i\), which defines the speed with which agent i can travel.

We are interested in operating the agents such that we minimize the total energy consumption \(\mathcal {E}\) and the delivery time \(\mathcal {T}\) (time when the package arrives at t). Specifically, we are after a schedule of the agents that lexicographically minimizes the tuple \((\mathcal {E}, \mathcal {T})\). We show that this problem can be solved in polynomial time \(\mathcal {O}(k|V|^2 + \mathrm{APSP})\), where \(\mathcal {O}(\mathrm{APSP})\) denotes the running time of an all-pair shortest-paths algorithm. This completes previous research which shows that minimizing only \(\mathcal {E}\) or only \(\mathcal {T}\) is polynomial-time solvable [6, 7], while minimizing a convex combination of \(\mathcal {E}\) and \(\mathcal {T}\), or lexicographically minimizing the tuple \((\mathcal {T},\mathcal {E})\) are both \(\mathrm {NP}\)-hard [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Formally, we have \(\bigcup _c W_c = [k]\) and \(\sum _c x_c = k\) such that \(\forall c, \forall i,j \in W_c:w_i = w_j\) and \(\forall c_1 < c_2, \forall i \in W_{c_1}, \forall j \in W_{c_2}:w_i > w_j\).

References

  1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29(4), 1164–1188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anaya, J., Chalopin, J., Czyzowicz, J., Labourel, A., Pelc, A., Vaxès, Y.: Convergecast and broadcast by power-aware mobile agents. Algorithmica 74(1), 117–155 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bampas, E., Czyzowicz, J., Gąsieniec, L., Ilcinkas, D., Klasing, R., Kociumaka, T., Pająk, D.: Linear search by a pair of distinct-speed robots. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 195–211. Springer, Cham (2016). doi:10.1007/978-3-319-48314-6_13

    Chapter  Google Scholar 

  4. Bärtschi, A., Chalopin, J., Das, S., Disser, Y., Geissmann, B., Graf, D., Labourel, A., Mihalák, M.: Collaborative delivery with energy-constrained mobile robots. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 258–274. Springer, Cham (2016). doi:10.1007/978-3-319-48314-6_17

    Chapter  Google Scholar 

  5. Bärtschi, A., Chalopin, J., Das, S., Disser, Y., Geissmann, B., Graf, D., Labourel, A., Mihalák, M.: Collaborative delivery with energy-constrained mobile robots. In: Theoretical Computer Science (2017, to appear)

    Google Scholar 

  6. Bärtschi, A., Chalopin, J., Das, S., Disser, Y., Graf, D., Hackfeld, J., Penna, P.: Energy-efficient delivery by heterogeneous mobile agents. In: 34th Symposium on Theoretical Aspects of Computer Science STACS 2017, pp. 10:1–10:14 (2017)

    Google Scholar 

  7. Bärtschi, A., Graf, D., Mihalák, M.: Collective fast delivery by energy-efficient agents (2017, unpublished manuscript)

    Google Scholar 

  8. Bärtschi, A., Graf, D., Penna, P.: Truthful mechanisms for delivery with mobile agents. CoRR arXiv:1702.07665 (2017)

  9. Bilò, D., Disser, Y., Gualà, L., Mihalák, M., Proietti, G., Widmayer, P.: Polygon-constrained motion planning problems. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds.) Algorithms for Sensor Systems. LNCS, vol. 8243, pp. 67–82. Springer, Heidelberg (2014). doi:10.1007/978-3-642-45346-5_6

    Chapter  Google Scholar 

  10. Chalopin, J., Das, S., Mihalák, M., Penna, P., Widmayer, P.: Data delivery by energy-constrained mobile agents. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 111–122. Springer, Heidelberg (2014). doi:10.1007/978-3-642-45346-5_9

    Chapter  Google Scholar 

  11. Chalopin, J., Jacob, R., Mihalák, M., Widmayer, P.: Data delivery by energy-constrained mobile agents on a line. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 423–434. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43951-7_36

    Google Scholar 

  12. Czyzowicz, J., Gasieniec, L., Georgiou, K., Kranakis, E., MacQuarrie, F.: The beachcombers’ problem: walking and searching with mobile robots. Theor. Comput. Sci. 608, 201–218 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23719-5_59

    Chapter  Google Scholar 

  14. Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration by energy-constrained mobile robots. In: Scheideler, C. (ed.) Structural Information and Communication Complexity. LNCS, vol. 9439, pp. 357–369. Springer, Cham (2015). doi:10.1007/978-3-319-25258-2_25

    Chapter  Google Scholar 

  15. Demaine, E.D., Hajiaghayi, M., Mahini, H., Sayedi-Roshkhar, A.S., Oveisgharan, S., Zadimoghaddam, M.: Minimizing movement. ACM Trans. Algorithms 5(3), 1–30 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fraigniaud, P., Ga̧sieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. Networks 48(3), 166–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Giannakos, A., Hifi, M., Karagiorgos, G.: Data Delivery by Mobile Agents with Energy Constraints over a fixed path. CoRR arXiv:1703.05496 (2017)

  18. Weise, E.: Amazon delivered its first customer package by drone. USA Today, 14 December 2016. http://usat.ly/2hNgf0y

Download references

Acknowledgments

This work was partially supported by the SNF (project 200021L_156620, Algorithm Design for Microrobots with Energy Constraints).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bärtschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Bärtschi, A., Tschager, T. (2017). Energy-Efficient Fast Delivery by Mobile Agents. In: Klasing, R., Zeitoun, M. (eds) Fundamentals of Computation Theory. FCT 2017. Lecture Notes in Computer Science(), vol 10472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55751-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55751-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55750-1

  • Online ISBN: 978-3-662-55751-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics