Skip to main content

Parikh Image of Pushdown Automata

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10472))

Included in the following conference series:

  • 641 Accesses

Abstract

We compare pushdown automata (PDAs for short) against other representations. First, we show that there is a family of PDAs over a unary alphabet with \(n\) states and \(p \ge 2n + 4\) stack symbols that accepts one single long word for which every equivalent context-free grammar needs \(\varOmega (n^2(p-2n-4))\) variables. This family shows that the classical algorithm for converting a PDA into an equivalent context-free grammar is optimal even when the alphabet is unary. Moreover, we observe that language equivalence and Parikh equivalence, which ignores the ordering between symbols, coincide for this family. We conclude that, when assuming this weaker equivalence, the conversion algorithm is also optimal. Second, Parikh’s theorem motivates the comparison of PDAs against finite state automata. In particular, the same family of unary PDAs gives a lower bound on the number of states of every Parikh-equivalent finite state automaton. Finally, we look into the case of unary deterministic PDAs. We show a new construction converting a unary deterministic PDA into an equivalent context-free grammar that achieves best known bounds.

P. Ganty—has been supported by the Madrid Regional Government project S2013/ICE-2731, N-Greens Software - Next-GeneRation Energy-EfficieNt Secure Software, and the Spanish Ministry of Economy and Competitiveness project No. TIN2015-71819-P, RISCO - RIgorous analysis of Sophisticated COncurrent and distributed systems.

E. Gutiérrez—is partially supported by BES-2016-077136 grant from the Spanish Ministry of Economy, Industry and Competitiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Their family has an alphabet of non-constant size.

  2. 2.

    In a sense that we will precise in Sect. 4 (Remark 10).

  3. 3.

    But not necessarily at the same positions, e.g. \(ab \) and \(ba\) are Parikh-equivalent.

  4. 4.

    In a sense that we will precise in Sect. 5 (Remark 16).

  5. 5.

    \( (w)_i \) is the \(i\)-th symbol of \(w\) if \(1\le i \le {\vert {w}\vert }\); else \( (w)_i=\varepsilon \). \({\vert {w}\vert }\) is the length of \(w\).

  6. 6.

    When \(b=\varepsilon \) the move does not consume input.

  7. 7.

    Note that if \(n \le Ck\) for some \(C>0\) then the \(n^3\) addend in \(\mathcal {O}(n^2k + n^3)\) becomes negligible compared to \(n^2k\), and the lower and upper bound coincide.

  8. 8.

    The set of final states is given by \(F\subseteq Q\).

  9. 9.

    As the blow up of our construction is \(\mathcal {O}(4^{n^2(k + 2n + 4)})\) for a lower bound of \(2^{n^2k}\), we say that it is close to optimal in the sense that \(2n^2(k + 2n + 4) \in \varTheta (n^2k)\), which holds when \(n\) is in linear relation with respect to \(k\) (see Remark 10).

References

  1. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997). doi:10.1007/3-540-63141-0_10

    Chapter  Google Scholar 

  2. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A., Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theory 51(7), 2554–2576 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chistikov, D., Majumdar, R.: Unary pushdown automata and straight-line programs. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 146–157. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43951-7_13

    Google Scholar 

  4. Esparza, J., Ganty, P., Kiefer, S., Luttenberger, M.: Parikh’s theorem: a simple and direct automaton construction. IPL 111(12), 614–619 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Esparza, J., Luttenberger, M., Schlund, M.: A brief history of strahler numbers. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 1–13. Springer, Cham (2014). doi:10.1007/978-3-319-04921-2_1

    Chapter  Google Scholar 

  6. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking pushdown systems (extended abstract). Electron. Notes Theoret. Comput. Sci. 9, 27–37 (1997)

    Article  MATH  Google Scholar 

  7. Ganty, P., Gutiérrez, E.: Parikh image of pushdown automata (long version) (2017). Pre-print arXiv arXiv: 1706.08315

  8. Goldstine, J., Price, J.K., Wotschke, D.: A pushdown automaton or a context-free grammar: which is more economical? Theoret. Comput. Sci. 18, 33–40 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2006)

    MATH  Google Scholar 

  10. Pighizzini, G.: Deterministic pushdown automata and unary languages. Int. J. Found. Comput. Sci. 20(04), 629–645 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rohit, J.P.: On context-free languages. J. ACM 13(4), 570–581 (1966)

    Article  MATH  Google Scholar 

Download references

Acknowledgement

We thank Pedro Valero for pointing out the reference on smallest grammar problems [2]. We also thank the anonymous referees for their insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Gutiérrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Ganty, P., Gutiérrez, E. (2017). Parikh Image of Pushdown Automata. In: Klasing, R., Zeitoun, M. (eds) Fundamentals of Computation Theory. FCT 2017. Lecture Notes in Computer Science(), vol 10472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55751-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55751-8_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55750-1

  • Online ISBN: 978-3-662-55751-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics