Skip to main content

FO Model Checking on Map Graphs

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10472))

Included in the following conference series:

Abstract

For first-order logic model checking on monotone graph classes the borderline between tractable and intractable is well charted: it is tractable on all nowhere dense classes of graphs, and this is essentially the limit. In contrast to this, there are few results concerning the tractability of model checking on general, i.e. not necessarily monotone, graph classes.

We show that model checking for first-order logic on map graphs is fixed-parameter tractable, when parameterised by the size of the input formula. Map graphs are a geometrically defined class of graphs similar to planar graphs, but here each vertex of a graph is drawn homeomorphic to a closed disk in the plane in such a way that two vertices are adjacent if, and only if, the corresponding disks intersect. Map graphs may contain arbitrarily large cliques, and are not closed under edge removal.

Our algorithm works by efficiently transforming a given map graph into a nowhere dense graph in which the original graph is first-order interpretable. As a by-product of this technique we also obtain a model checking algorithm for FO on squares of trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Elements of V are referred to as nations by Chen et al.

References

  1. Chen, Z.Z., Grigni, M., Papadimitriou, C.H.: Map graphs. J. ACM 49(2), 127–138 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. 2, pp. 194–242. Elsevier, Amsterdam (1990)

    Google Scholar 

  3. Courcelle, B., Makowsky, J., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dawar, A., Grohe, M., Kreutzer, S.: Locally excluding a minor. In: Logic in Computer Science (LICS), pp. 270–279 (2007)

    Google Scholar 

  5. Diestel, R.: Graph Theory. GTM, vol. 173, 4th edn. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  6. Dvořák, Z., Král, D., Thomas, R.: Testing first-order properties for subclasses of sparse graphs. J. ACM (JACM) 60(5), 36 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Perspectives in Mathematical Logic, 2nd edn. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  8. Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic, 2nd edn. Springer, Heidelberg (1994)

    Book  MATH  Google Scholar 

  9. Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures. J. ACM 48, 1148–1206 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gajarský, J., Hliněný, P., Lokshtanov, D., Obdržálek, J., Ordyniak, S., Ramanujan, M., Saurabh, S.: FO model checking on posets of bounded width. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pp. 963–974. IEEE (2015)

    Google Scholar 

  11. Gajarský, J., Hliněný, P., Obdržálek, J., Lokshtanov, D., Ramanujan, M.S.: A new perspective on FO model checking of dense graph classes. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2016, pp. 176–184. ACM (2016)

    Google Scholar 

  12. Ganian, R., Hliněný, P., Král’, D., Obdržálek, J., Schwartz, J., Teska, J.: FO model checking of interval graphs. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 250–262. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39212-2_24

    Chapter  Google Scholar 

  13. Geller, D.P.: The square root of a digraph. J. Combin. Theory 5, 320–321 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grohe, M., Kreutzer, S., Siebertz, S.: Deciding first-order properties of nowhere dense graphs. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC 2014, pp. 89–98. ACM (2014)

    Google Scholar 

  15. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64(1), 19–37 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Libkin, L.: Elements of Finite Model Theory. Texts in Theoretical Computer Science. Spinger, Heidelberg (2004)

    Book  MATH  Google Scholar 

  17. Lin, Y.-L., Skiena, S.S.: Algorithms for square roots of graphs. In: Hsu, W.-L., Lee, R.C.T. (eds.) ISA 1991. LNCS, vol. 557, pp. 12–21. Springer, Heidelberg (1991). doi:10.1007/3-540-54945-5_44

    Google Scholar 

  18. Makowsky, J.: Algorithmic uses of the Feferman-Vaught theorem. Annals Pure Appl. Log. 126(1–3), 159–213 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mnich, M., Rutter, I., Schmidt, J.M.: Linear-time recognition of map graphs with outerplanar witness. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 53. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

    Google Scholar 

  20. Mukhopadhyay, A.: The square root of a graph. J. Comb. Theory 2, 290–295 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nešetřil, J., de Mendez, P.O.: Sparsity – Graphs, Structures, and Algorithms. Algorithms and Combinatorics, vol. 28. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27875-4

    MATH  Google Scholar 

  22. Thorup, M.: Map graphs in polynomial time. In: Proceedings of 39th Annual Symposium on Foundations of Computer Science, pp. 396–405. IEEE (1998)

    Google Scholar 

  23. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tutte, W.T.: Graph Theory. Encyclopedia of Mathematics and its Applications, vol. 21. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kord Eickmeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Eickmeyer, K., Kawarabayashi, Ki. (2017). FO Model Checking on Map Graphs. In: Klasing, R., Zeitoun, M. (eds) Fundamentals of Computation Theory. FCT 2017. Lecture Notes in Computer Science(), vol 10472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55751-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55751-8_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55750-1

  • Online ISBN: 978-3-662-55751-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics