Skip to main content

Strategic Knowledge of the Past in Quantum Cryptography

  • Conference paper
  • First Online:
Logic, Rationality, and Interaction (LORI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10455))

Included in the following conference series:

Abstract

We propose an epistemic strategy logic with future and past time operators, called \(\text {SLKP}\), for Strategy Logic with Knowledge of the Past. With \(\text {SLKP}\) we can model mutually observed moves/actions in strategic contexts. In a semantic game, agents may completely or partially observe other agents’ moves, their moves may depend on their knowledge of other players’ strategies, and their knowledge may depend on the history of their own or other’s moves. The logic \(\text {SLKP}\) also allows us to describe temporal properties involving past, future, and composed tenses such as future perfect or counterfactual assertions. We illustrate SLKP by formalising the quantum cryptography protocol BB84, with the purpose to initiate an integrated epistemic and strategic treatment of agent interactions in quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Configurations are commonly referred to as states. In this paper we use the word configuration instead, to avoid ambiguities since state is also used in its physical sense, to designate the state of a photon in .

References

  1. Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. Inf. Comp. 208(6), 677–693 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Mogavero, F., Murano, A., Vardi, M.Y.: Reasoning about strategies. In: Proceedings of FSTTCS, vol. 8, pp. 133–144 (2010)

    Google Scholar 

  3. Ågotnes, T., Goranko, V., Jamroga, W., Wooldridge, M.: Knowledge and Ability. Volume Handbook of Epistemic Logic. College Publications (2015)

    Google Scholar 

  4. Jamroga, W., Ågotnes, T.: Constructive knowledge: what agents can achieve under imperfect information. J. Appl. Non-Class. Logics 17, 423–475 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Belardinelli, F.: Reasoning about knowledge and strategies: epistemic strategy logic. In: Proceedings of 2nd International Workshop on Strategic Reasoning, SR, pp. 27–33 (2014)

    Google Scholar 

  6. Knight, S., Maubert, B.: Dealing with imperfect information in strategy logic. In: Proceedings of 3rd International Workshop on Strategic Reasoning, SR (2015)

    Google Scholar 

  7. Van Ditmarsch, H., van Der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, vol. 337. Springer, Dordrecht (2007)

    Book  MATH  Google Scholar 

  8. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: International Conference on Computers, Systems and Signal Processing, pp. 175–179 (1984)

    Google Scholar 

  9. Bergfeld, J.M., Sack, J.: Deriving the correctness of quantum protocols in the probabilistic logic for quantum programs. Soft Comput., 1–21 (2015)

    Google Scholar 

  10. Baltazar, P., Chadha, R., Mateus, P.: Quantum computation tree logic, model checking and complete calculus. Int. J. Quantum Inf. 6, 219–236 (2008)

    Article  MATH  Google Scholar 

  11. Mittelstaedt, P.: The modal logic of quantum logic. J. Phil. Logic 8, 479–504 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dalla Chiara, M.L.: Quantum logic and physical modalities. J. Phil. Logic 6, 391–404 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goldblatt, R.I.: Semantic analysis of orthologic. J. Phil. Logic 3, 19–35 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Baltag, A., Smets, S.: LQP: the dynamic logic of quantum information. Math. Struct. Comput. Sci. 16(3), 491 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Baltag, A., Smets, S.: The dynamic turn in quantum logic. Synthese 186, 1–21 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Baltag, A., Smets, S.: Correlated knowledge: an epistemic-logic view on quantum entanglement. Int. J. Theoret. Phys. 49(12), 3005–3021 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Baltag, A., Smets, S.: Correlated information: a logic for multi-partite quantum systems. Electron. Not. Theoret. Comput. Sci. 270(2), 3–14 (2011)

    Article  MATH  Google Scholar 

  18. Beltrametti, E., Chiara, M., Giuntini, R., Sergioli, G.: Quantum teleportation and quantum epistemic semantics. Math. Slovaca 62(6), 1121–1144 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chareton, C., Brunel, J., Chemouil, D.: Towards an updatable strategy logic. In: Proceedings of 1st International Workshop on Strategic Reasoning, SR, pp. 91–98 (2013)

    Google Scholar 

  20. Chareton, C., Brunel, J., Chemouil, D.: A logic with revocable and refinable strategies. Inf. Comput. 242, 157–182 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 196–218. Springer, Heidelberg (1985). doi:10.1007/3-540-15648-8_16

    Chapter  Google Scholar 

  22. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer, Heidelberg (1998). doi:10.1007/BFb0055090

    Chapter  Google Scholar 

  23. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. In: Proceedings of 22nd IJCAI, pp. 854–860 (2013)

    Google Scholar 

  24. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Campenhout, D.: Reasoning with temporal logic on truncated paths. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45069-6_3

    Chapter  Google Scholar 

  25. Beltrametti, E., et al.: Epistemic quantum computational structures in a hilbert-space environment. Fundamenta Informaticae 115, 1–14 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81(14), 3018–3021 (1998)

    Article  Google Scholar 

Download references

Acknowledgement

We thank the reviewers for their helpful comments. We acknowledge financial support from ERC project EPS 313360. Hans van Ditmarsch is also affiliated to IMSc, Chennai, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Chareton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Chareton, C., van Ditmarsch, H. (2017). Strategic Knowledge of the Past in Quantum Cryptography. In: Baltag, A., Seligman, J., Yamada, T. (eds) Logic, Rationality, and Interaction. LORI 2017. Lecture Notes in Computer Science(), vol 10455. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55665-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55665-8_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55664-1

  • Online ISBN: 978-3-662-55665-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics