Skip to main content

A Hybrid Multi-objective Evolutionary Approach for Power Grid Topology Design

  • Chapter
  • First Online:
Book cover Evolutionary Algorithms, Swarm Dynamics and Complex Networks

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 26))

Abstract

Power grid is one of the critical infrastructures in human society. It is highly complex in both structure and dynamics. In order to study its performance, different models, such as Kuramoto oscillator network model, power flow model, cascading load model and so on, have been suggested. In this chapter, it is to demonstrate how an evolutionary algorithm can be applied to effectively solve the topological design problem in power grid based on the Kuramoto oscillator network model. Recognizing that multiple criteria are commonly confronted in practice, a multi-objective evolutionary algorithm is developed. Two objectives, namely the network synchronizability and the cost, are considered in this work. In addition, since the design problem is complex and nonlinear, a dedicated local searching mechanism is embedded to enhance the searching capability of the algorithm. Finally, the effectiveness of the proposed algorithm is confirmed by extensive numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bag, B.C., Petrosyan, K.G., Hu, C.K.: Influence of noise on the synchronization of the stochastic Kuramoto model. Phys. Rev. E. 76, 056210 (2007)

    Article  Google Scholar 

  2. de Paiva, J., Toledo, C., Pedrini, H.: An approach based on hybrid genetic algorithm applied to image denoising problem. Appl. Soft Comput. 46, 778–791 (2016)

    Article  Google Scholar 

  3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  4. Dorfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proc. Natl. Acad. Sci. USA 110(6), 2005–2010 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Duan, Z., Chen, G., Huang, L.: Complex network synchronizability: analysis and control. Phys. Rev. E. 76, (2007)

    Google Scholar 

  6. El Ramli, R., Awad, M., Jabr, R.: Ordinal optimization for dynamic network reconfiguration. Electr. Power Compon. Syst. 39, 1845–1857 (2011)

    Article  Google Scholar 

  7. Figure of the planning propsoal of China UHV power grid in 2020. http://upload.zgswcn.com/2014/0516/1400221373552.png. Accessed 21 Sep 2016

  8. Filatrella, G., Nielsen, A., Pedersen, N.: Analysis of a power grid using a Kuramoto-like model. Eur. Phys. J. B. 61, 485–491 (2008)

    Article  Google Scholar 

  9. Gajduk, A., Todorovski, M., Kocarev, L.: Improved steady-state stability of power grids with a communication infrastructure. arXiv:1410.2168 (2014)

  10. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms - Part I: a unified formulation. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum 28(1), 26–37 (1998)

    Article  Google Scholar 

  11. Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched Pareto genetic algorithm for multiobjecitve optimization. 1st IEEE Conf. Evolut. Comput. 82–87 (1994)

    Google Scholar 

  12. Jin, Y., Hao, J.: Hybrid evolutionary search for the minimum sum coloring problem of graphs. Inf. Sci. 352, 15–34 (2016)

    Article  Google Scholar 

  13. Judd, K.: Networked dynamical systems with linear coupling: synchronisation patterns, coherence and other behaviours. Chaos 23, 043112 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ko, Y., Warnier, M., Van Mieghem, P., Kooij, R., Brazier, F.: A topological investigation of phase transitions of cascading failures in power grids. Physica A 415, 273–284 (2014)

    Article  MathSciNet  Google Scholar 

  15. Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators. In: International Symposium on Mathematical Problems in Theoretical Physics, pp. 420–422. Springer, Berlin (1975)

    Google Scholar 

  16. Li, Y., Sansavini, G., Zio, E.: Non-dominated sorting binary differential evolution for the multi-objective optimization of cascading failures protection in complex networks. Reliab. Eng. Syst. Saf. 111, 195–205 (2013)

    Article  Google Scholar 

  17. Lin, Z., Wen, F., Xue, Y.: A restorative self-healing algorithm for transmission systems based on complex network theory. IEEE Trans. Smart Grid 7, 2154–2162 (2016)

    Article  Google Scholar 

  18. Menck, P., Heitzig, J., Kurths, J., Joachim Schellnhuber, H.: How dead ends undermine power grid stability. Nat. Commun. 5, (2014)

    Google Scholar 

  19. Moreno, Y., Pacheco, A.F.: Synchronization of Kuramoto oscillators in scale-free networks. Europhys. Lett. 68, 603–609 (2004)

    Article  Google Scholar 

  20. Ng, E.: China’s under-utilised ultra-high-voltage power lines no silver bullet to rid grid of bottlenecks, South China morning post. http://www.scmp.com/business/article/1912878/chinas-under-utilised-ultra-high-voltage-power-lines-no-silver-bullet-rid (2016). Accessed 04 Sep 2016

  21. Nordenfelt, A., Wagemakers, A., Sanjuan, M.A.F.: Frequency dispersion in the time delayed Kuramoto model. Phys. Rev. E. 89, 032905 (2014)

    Article  Google Scholar 

  22. Pecora, L.M., Sorrentino, F., Hagerstrom, A.M., Murphy, T.E., Roy, R.: Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nat. Commun. 5, 4079 (2014)

    Article  Google Scholar 

  23. Ren, H., Song, J., Yang, R., Baptista, M., Grebogi, C.: Cascade failure analysis of power grid using new load distribution law and node removal rule. Physica A. 442, 239–251 (2016)

    Article  MathSciNet  Google Scholar 

  24. Sakaguchi, H., Matsuo, T.: Cascade failure in a phase model of power grids. J. Phys. Soc. Jpn. 81, 074005 (2012)

    Article  Google Scholar 

  25. Vlasov, V., Macau, E.E.N., Pikovsky, A.: Synchronization of oscillators in a Kuramoto-type model with generic coupling. Chaos 24, 023120 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, Z., Chen, G., Hill, D., Dong, Z.: A power flow based model for the analysis of vulnerability in power networks. Physica A 460, 105–115 (2016)

    Article  Google Scholar 

  27. Witthaut, D., Timme, M.: Braess’s paradox in oscillator networks, desynchronization and power outage. New J. Phys. 14, 083036 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this chapter was supported by a grant from City University of Hong Kong (Project No. 7004422) and the Alexander von Humboldt Research Group Linkage 3.4-IP-DEU/1009882.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowen Bi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bi, X., Tang, W.K.S. (2018). A Hybrid Multi-objective Evolutionary Approach for Power Grid Topology Design. In: Zelinka, I., Chen, G. (eds) Evolutionary Algorithms, Swarm Dynamics and Complex Networks. Emergence, Complexity and Computation, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55663-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55663-4_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55661-0

  • Online ISBN: 978-3-662-55663-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics