Advertisement

Urinmarker beim Blasenkarzinom

Zusammenfassung

Der wesentliche urin-basierte «Urinmarker« bleibt die Beurteilung der zellulären Urinbestandteile mithilfe der Urinzytologie. Die Suche nach zuverlässigen anderen Urinmarkern hat zu vermarkteten Produkten geführt, die zwar oft eine höhere Sensitivität gerade im Bereich der ‚Low-grade‘ Tumoren erreichen als die Urinzytologie, aber auch eine höhere falsch-positive Rate sowie vor allem eine deutlich niedrigere Spezifität, und damit eine geringere Zuverlässigkeit im Ausschluss eines ‚High-grade‘ Tumors. Dennoch bleibt die Suche nach Urinmarkern für das Urothelkarzinom ein bedeutsames Forschungsgebiet, was vor allem für die Nachsorge des nicht-muskelinvasiven Blasenkarzinoms enorme Bedeutung hätte. Verfeinerte zellbasierte Verfahren wie die Immunzytologie sind hierbei erfolgversprechend. Die enorme Ausweitung der Nachweismöglichkeiten auf molekulargenetische Veränderungen, Peptide und Proteine, Nukleinsäuren und anderes mehr im Urin mithilfe von ‚high throughput‘-Verfahren aus den Bereichen ‚Genomics, Proteomics und Metabolomics‘ hat die Palette an potenziellen Markern enorm erweitert.

Literatur

  1. Babjuk M, Burger M, et al., Eds. (2017). EAU Guidelines on non-muscle invasive bladder cancer (Ta,T1 and CIS). European Association of Urology Guidelines. Arnhem, EAU Guidelines Office.Google Scholar
  2. Babjuk M, Kostirova M, et al. (2002). «Qualitative and quantitative detection of urinary human complement factor H-related protein (BTA stat and BTA TRAK) and fragments of cytokeratins 8, 18 (UBC Rapid and UBC IRMA) as markers for transitional cell carcinoma of the bladder.» Eur Urol 41: 34-39.Google Scholar
  3. Berezney R and Coffey DS (1974). «Identification of a nuclear protein matrix.» Biochem Biophys Res Comm 60: 1410-1414.Google Scholar
  4. Bollmann M, Heller H, et al. (2005). «Quantitative molecular urinary cytology by fluorescence in situ hybridization: a tool for tailoring surveillance of patients with superficial bladder cancer?» BJU Int 95(9): 1219-25.Google Scholar
  5. Boman H, Hedelin H, et al. (2002). «Newly diagnosed bladder cancer: the relationship of initial symptoms, degree of microhematuria and tumour marker set.» J Urol 168(5): 1955-1959.Google Scholar
  6. Bonberg N, Pesch B, et al. (2014). «Chromosomal alterations in exfoliated urothelial cells from bladder cancer cases and healthy men: a prospective screening study.» BMC Cancer 14: 854.Google Scholar
  7. Bongiovanni L, Pirozzi F, et al. (2012). «Bradeion (SEPT4) as a urinary marker of transitional cell bladder cancer: a real-time polymerase chain reaction study of gene expression.» J Urol 187(6): 2223-7.Google Scholar
  8. Bonner RB, Liebert M, et al. (1996). «Characterization of the DD23 tumor-associated antigen for bladder cancer detection and recurrence monitoring. Marker Network for Bladder Cancer.» Cancer Epidemiol Biomarkers Prev 5(12): 971-8.Google Scholar
  9. Bonner RB, Liebert M, et al. (1996). «Characterization of the DD23 tumor-associated antigen for bladder cancer detection and recurrence monitoring. Marker Network for Bladder Cancer.» Cancer Epidemiol Biomarkers Prev 5(12): 971-978.Google Scholar
  10. Botteman, M. F., C. L. Pashos, et al. (2003). «The health economics of bladder cancer: a comprehensive review of the published literature.» Pharmacoeconomics 21(18): 1315-30.Google Scholar
  11. Bubendorf L, Grilli B, et al. (2001). «Multiprobe FISH for enhanced detection of bladder cancer in voided urine specimens and bladder washings.» Am J Clin Pathol 116: 79-86.Google Scholar
  12. Cai T, Nesi G, et al. (2012). «Prediction of response to bacillus Calmette-Guerin treatment in non-muscle invasive bladder cancer patients through interleukin-6 and interleukin-10 ratio.» Exp Ther Med 4(3): 459-464.Google Scholar
  13. Cassel A, Rahat MA, et al. (2001). «Telomerase activity and cytokeratin 20 as markers for the detection and follow-up of transitional cell carcinoma: an unfulfilled promise.» J Urol 166: 841-844.Google Scholar
  14. Chou R, Gore JL, et al. (2015). «Urinary biomarkers for diagnosis of bladder cancer.» Ann Int Med 163(12): 922-934.Google Scholar
  15. Coenen MJ, Ploeg M, et al. (2008). «Allelic imbalance analysis using a single-nucleotide polymorphism microarray for the detection of bladder cancer recurrence.» Clin Cancer Res 14(24): 8198-204.Google Scholar
  16. Comploj E, Mian C, et al. (2013). «uCyt+/ImmunoCyt and cytology in the detection of urothelial carcinoma: an update on 7422 analyses.» Cancer Cytopathol 121(7): 392-7.Google Scholar
  17. Cornu JN, Cancel-Tassin G, et al. (2011). «Olfactory detection of prostate cancer by dogs sniffing urine: a step forward in early diagnosis.» Eur Urol 59(2): 197-201.Google Scholar
  18. Dalbagni G, R. V. Presti J, et al. (1993). «Genetic alterations in bladder cancer.» Lancet 342: 469-471.Google Scholar
  19. Davies B, Chen J, et al. (2005). «Contribution of the prostate limits the usefulness of survivin for the detection of bladder cancer.» J Urol 174: 1767-1770.Google Scholar
  20. Davies B, Chen JJ, et al. (2005). «Efficacy of BTA stat, cytology, and survivin in bladder cancer surveillance over 5 years in patients with spinal cord injury.» Urology 66(4): 908-11.Google Scholar
  21. de Bekker-Grob EW, van der Aa MN, et al. (2009). «Non-muscle-invasive bladder cancer surveillance for which cystoscopy is partly replaced by microsatellite analysis of urine: a cost-effective alternative?» BJU Int 104(1): 41-7.Google Scholar
  22. De Kok JB, Schalken JA, et al. (2000). «Quantitative measurement of telomerase reverse transcriptase (hTERT) mRNA in urothelial carcinomas.» Int J Cancer 87: 217-220.Google Scholar
  23. Feber A, Dhami P, et al. (2017). «UroMark-a urinary biomarker assay for the detection of bladder cancer.» Clin Epigenetics 9: 8.Google Scholar
  24. Frantzi M and Vlahou A (2017). «Ten years of proteomics in bladder cancer: progress and future directions.» Bladder Cancer 3: 1-18.Google Scholar
  25. Getzenberg RH, Konety BR, et al. (1996). «Blader cancer-associated nuclear matrix proteins.» Cancer Res 56: 1690-1694.Google Scholar
  26. Giannopoulos A, Manousakas T, et al. (2001). «Comparative evaluation of the diagnostic performance of the BTA STAT test and urinary bladder cancer antigen for primary and recurrent bladder tumours.» J Urol 166: 470-475.Google Scholar
  27. Gilbert SM, Veltri RW, et al. (2003). «Evaluation of DD23 as a marker for detection of recurrent transitional cell carcinoma of the bladder in patients with a history of bladder cancer.» Urology 61(3): 539-543.Google Scholar
  28. Glas AS, Roos D, et al. (2003). «Tumour markers in the diagnosis of primary bladder cancer. A systematic review.» J Urol 169: 1975-1982.Google Scholar
  29. Glas AS, Roos D, et al. (2003). «Tumour markers in the diagnosis of primary bladder cancer. A systematic review.» J Urol 169: 1975-1982.Google Scholar
  30. Grossman HB, Messing E, et al. (2005). «Detection of bladder cancer using a point-of-care proteomic assay.» JAMA 293(7): 810-816.Google Scholar
  31. Grossman, H. B., M. Soloway, et al. (2006). «Surveillance for recurrent bladder cancer using a point-of-care proteomic assay.» JAMA 295(3): 299-305.Google Scholar
  32. Grossmann HB, Messing E, et al. (2005). «Detection of bladder cancer using a point-of-care proteomic assay.» JAMA 293: 810-816.Google Scholar
  33. Guerrero-Flores, H., T. Apresa-Garcia, et al. (2017). «A non-invasive tool for detecting cervical cancer odor by trained scent dogs.» BMC Cancer 17(1): 79.Google Scholar
  34. Guo A, Wang X, et al. (2014). «Bladder tumour antigen (BTA stat) test compared to the urine cytology in the diagnosis of bladder cancer: a meta-analysis.» Can Urol Assoc J 8: E347-352.Google Scholar
  35. Gutierrez Banos JL, Robollo Rodrigo MH, et al. (2001). «NMP22, BTA stat test and cytology in the diagnosis of bladder cancer: a comparative study.» Urol Int 66(4): 185-190.Google Scholar
  36. Hajdinjak T (2008). «UroVysion FISH test for detecting urothelial cancers: meta-analysis of diagnostic accuracy and comparison with urinary cytology testing.» Urol Oncol 26: 646-651.Google Scholar
  37. Hakenberg OW, Fuessel S, et al. (2004). «Qualitative and quantitative assessment of urinary cytokeratin 8 and 18 fragments compared with voided urine cytology in diagnosis of bladder carcinoma.» Urology 64(6): 1121-1126.Google Scholar
  38. Hanke M, Hoefig K, et al. (2010). «A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer.» Urol Oncol 28(6): 655-61.Google Scholar
  39. Hattori S, Kojima K, et al. (2014). «Detection of bladder cancer by measuring CD44v6 expression in urine with real-time quantitative reverse transcription polymerase chain reaction.» Urology 83(6): 1443 e9-15.Google Scholar
  40. Hausladen DA, Wheeler MA, et al. (2003). «Effect of intravesical treatment of transitional cell carcinoma with bacillus Calmette-Guerin and mitomycin C on urinary survivin levels and outcome.» J Urol 170: 230-234.Google Scholar
  41. Hautmann SH, Toma M, et al. (2004). «Immunocyt and the HA-HAase urine tests for the detection of bladder cancer: a side-by-side comparison.» Eur Urol 46: 466-471.Google Scholar
  42. Hedelin H, Jonsson K, et al. (2006). «Screening for bladder tumours in men aged 60-70 years with a bladder tumour marker (UBC) and dipstick-detected haematuria using both white-light and fluorescence cystoscopy.» Scand J Urol Nephrol 40(1): 26-30.Google Scholar
  43. Holyoake A, O’Sullivan P, et al. (2008). «Development of a multiplex RNA urine test for the detection and stratification of transitional cell carcinoma of the bladder.» Clin Cancer Res 14(3): 742-9.Google Scholar
  44. Hoque MO, Lee J, et al. (2003). «High-throughput molecular analysis of urine sediment for the detection of bladder cancer by high-density single-nucleotide polymorphism array.» Cancer Res 63(18): 5723-6.Google Scholar
  45. Huang YL, Chen J, et al. (2015). «Diagnostic accuracy of cytokeratin-19 fragment (CYFRA 21-1) for bladder cancer: a systematic review and metaanalysis.» Tumour Biol 36: 3137-3145.Google Scholar
  46. Huang YL, Chen J, et al. (2015). «Diagnostic accuracy of cytokeratin-19 fragment (CYFRA 21-1) for bladder cancer: a systematic review and meta-analysis.» Tumour Biol 36(5): 3137-45.Google Scholar
  47. Huland E, Huland H, et al. (1991). «Comparison of 15 monoclonal antibodies against tumour-associated antigens of transitional cell carcinoma of the human bladder.» J Urol 146: 1631-1636.Google Scholar
  48. Huland H, Arndt R, et al. (1987). «Monoclonal antibody 486P3/12: a valuable bladder carcinoma marker for immunocytology.» J Urol 137: 654-659.Google Scholar
  49. Jamshidian H, Kor K, et al. (2008). «Urine concentration of nuclear matrix protein 22 for diagnosis of transitional cell carcinoma of bladder.» Urol J 5(4): 243-7.Google Scholar
  50. Jayachandran S, Unni Mooppan MM, et al. (1984). «The value of urinary fibrin/fibrinogen degradation products as tumour markers in urothelial carcinoma.» J Urol 132: 21-23.Google Scholar
  51. Jeon C, Kim M, et al. (2013). «Prognostic role of survivin in bladder cancer: a systematic review and meta-analysis.» PLoS One 8: e76719.Google Scholar
  52. Johnston B, Morales A, et al. (1997). «Rapid detection of bladder cancer: a comparative study of point of care tests.» J Urol 158: 2107-2108.Google Scholar
  53. Keesee SK, Briggman JV, et al. (1996). «Utilization of nuclear matrix proteins for cancer diagnosis.» Crit Rev Eukaryot Gene Expr 6: 189-194.Google Scholar
  54. Kinders R, Jones T, et al. (1998). «Complement factor H or a related protein is a marker for transitional cell cancer of the bladder.» Clin Cancer Res 4: 2511-2520.Google Scholar
  55. Kipp BR, Karnes RJ, et al. (2005). «Monitoring intravesical therapy for superficial bladder cancer using fluorescence in situ hybridization.» J Urol 173(2): 401-4.Google Scholar
  56. Konety BR, Nguyen TS, et al. (2000). «Detection of bladder cancer using a novel nuclear matrix protein, BCLA-4.» Clin Cancer Res 6: 2618-2622.Google Scholar
  57. Kriegmair M, Zaak D, et al. (2002). «Transurethral resection for bladder cancer using 5-aminolevulinic acid induced fluorescence endoscopy versus white light endoscopy.» J Urol 168: 475-478.Google Scholar
  58. Ku JH, Godoy G, et al. (2012). «Urine survivin as a diagnostic biomarker for bladder cancer: a systematic review.» BJU Int 110: 630-636.Google Scholar
  59. Lahme S, Bichler KH, et al. (2001). «Comparison of cytology and nuclear matrix protein 22 for the detection and follow-up of bladder cancer.» Urol Int 66(2): 72-77.Google Scholar
  60. Leitlinienprogramm Onkologie. (2016). «S3-Leitlinie Früherkennung, Diagnose, Therapie und Nachsorge des Harnblasenkarzinoms.» AWMF-Registrierungsnummer 032/038OL.Google Scholar
  61. Linn JF, Lango M, et al. (1997). «Microsatellite analysis and telomerase activity in archived tissue and urine samples of bladder cancer patients.» Int J Cancer 74(6): 625-629.Google Scholar
  62. Liu W, Guan M, et al. (2005). «Using tree analysis pattern and SELDI-TOF-MS to discriminate transitional cell carcinoma of the bladder cancer from noncancer patients.» Eur Urol 47(4): 456-462.Google Scholar
  63. Lodde M, Mian C, et al. (2003). «Role of uCyt+ in the detection and surveillance of urothelial carcinoma.» Urology 61(1): 243-247.Google Scholar
  64. Lodde M, Mian C, et al. (2003). «Role of uCyt in the detection and surveillance of urothelial carcinoma.» Urology 61: 243-247.Google Scholar
  65. Lokeshwar VB, Obek C, et al. (2000). «Urinary hyaluronic acid and hyaluronidase markers for bladder cancer detection and evaluation of grade.» J Urol 163: 348-356.Google Scholar
  66. Lokeshwar VB, Obek C, et al. (1997). «Tumour associated hyaluronic acid: A new sensitive and specific urine marker for bladder cancer.» Cancer Res 57: 773-777.Google Scholar
  67. Longin A, Hijazi A, et al. (1989). «A monoclonal antibody (BL2-10D1) reacting with a bladder cancer-associated antigen.» Int J Cancer 43: 183-189.Google Scholar
  68. Lotan Y, Bensalah K, et al. (2008). «Prospective evaluation of the clinical usefulness of reflex fluorescence in situ hybridization assay in patients with atypical cytology for the detection of urothelial carcinoma of the bladder.» J Urol 179(6): 2164-9.Google Scholar
  69. Lotan Y, Capitanio U, et al. (2014). «Prospective external validation of a bladder cancer detection model.» J Urol 192: 1343-1348.Google Scholar
  70. Lotan Y, Elias K, et al. (2009). «Bladder cancer screening in a high risk asymptomatic population using a point of care urine based protein tumor marker.» J Urol 182(1): 52-7; discussion 58.Google Scholar
  71. Lotan Y and Roehrborn C (2003). «Sensitivity and specificity of commonly available tumour markers versus cytology: results of a comprehensive literature review and meta-analysis.» Urology 61(1): 109-118.Google Scholar
  72. Lotan Y and Roehrborn CG (2003). «Sensitivity and specificity of commonly available bladder tumor markers versus cytology: results of a comprehensive literature review and meta-analyses.» Urology 61(1): 109-18; discussion 118.Google Scholar
  73. Malkowicz SB (2000). «The application of human complement factor H-realted protein (BTA Trak) in monitoring patients with bladder cancer.» Urol Clin North Am 27: 63-70.Google Scholar
  74. Mbeutcha A, Lucca I, et al. (2016). «Current status of urinary biomarkers for detection and surveillance of bladder cancer.» Urol Clin N Am 43: 47-62.Google Scholar
  75. Melissourgoos N, Kastrinakis NG, et al. (2003). «Detection of human telomerase reverse transcriptase mRNA in urine of patients with bladder cancer: evaluation of an emerging tumour marker.» Urology 62: 362-367.Google Scholar
  76. Messing EM, Young TB, et al. (1987). «The significance of asymptomatic microhematuria in men 50 or more years old: findings of a home screening study using urinary dipsticks.» J Urol 137(5): 919-922.Google Scholar
  77. Messing EM, Young TB, et al. (1992). «Home screening for hematuria: results of a multiclinic study.» J Urol 148(2): 289-292.Google Scholar
  78. Messing EM, Young TB, et al. (1995). «Comparison of bladder cancer outcome in men undergoing hematuria home screening versus those with standard clinical presentation.» Urology 45(3): 387-397.Google Scholar
  79. Messing, E. M., R. Madeb, et al. (2006). «Long-term outcome of hematuria home screening for bladder cancer in men.» Cancer 107(9): 2173-9.Google Scholar
  80. Mian C, Pycha A, et al. (1999). «Immunocyt: a new tool for detecting transitional cell cancer of the urinary tract.» J Urol 161: 1486-1489.Google Scholar
  81. Mlcochova H, Hezova R, et al. (2014). «Urine microRNAs as potential noninvasive biomarkers in urologic cancers.» Urol Oncol 32(1): 41 e1-9.Google Scholar
  82. Mohr DN, Offord KP, et al. (1986). «Asymptomatic microhematuria and urologic disease. A population based study.» JAMA 256(2): 224-229.Google Scholar
  83. Mowatt G, Zhu S, et al. (2010). «Systematic review of the clinical effectiveness and cost-effectiveness of photodynamic diagnosis and urine biomarkers (FISH, ImmunoCyt, NMP22) and cytology for the detection and follow-up of bladder cancer.» Health Technol Assess 14(4): 1-331.Google Scholar
  84. Mueller J, von Eggeling F, et al. (2005). «ProteinChip technology reveals distinctive protein expression profiles in the urine of bladder cancer patients.» Eur Urol 47(6): 885-893.Google Scholar
  85. Mungan NA, Vriesema JL, et al. (2000). «Urinary bladder cancer test: a new urinary tumour marker in the follow-up of superficial bladder cancer.» Urology 56(5): 787-792.Google Scholar
  86. Murphy WM, Emerson LD, et al. (1986). «Flow cytometry versus urinary cytology in the evaluation of patients with bladder cancer.» J Urol 136(4): 815-819.Google Scholar
  87. Myers-Irvin JM, Landsittle D, et al. (2005). «Use of the novel marker BLCA-1 for the detection of bladder cancer.» J Urol 174: 64-68.Google Scholar
  88. Newman AJ Jr, Carlton CE Jr, et al. (1980). «Cell surface A,B or = (H) blood group antigens as an indicator of malignant potential in stage A bladder carcinoma.» J Urol 124(1): 27-29.Google Scholar
  89. O’Sullivan P, Sharples K, et al. (2012). «A multigene urine test for the detection and stratification of bladder cancer in patients presenting with hematuria.» J Urol 188(3): 741-7.Google Scholar
  90. Oge O, Kzaci D, et al. (2002). «The BTA Stat test is nonspecific for meaturia: an experimental hematuria model.» J Urol 167: 1318-1319.Google Scholar
  91. Park HS, Park WS, et al. (2008). «Quantitation of Aurora kinase A gene copy number in urine sediments and bladder cancer detection.» J Natl Cancer Inst 100(19): 1401-11.Google Scholar
  92. Passerotti CC, Bonfim A, et al. (2006). «Urinary hyaluronan as a marker for the presence of residual transitional cell carcinoma of the urinary bladder.» Eur Urol 49(1): 71-75.Google Scholar
  93. Paul DS, Guilhamon P, et al. (2014). «Assessment of RainDrop BS-seq as a method for large-scale, targeted bisulfite sequencing.» Epigenetics 9(5): 678-84.Google Scholar
  94. Pesch B, Taeger D, et al. (2014). «Screening for bladder cancer with urinary tumor markers in chemical workers with exposure to aromatic amines.» Int Arch Occup Environ Health 87(7): 715-24.Google Scholar
  95. Pfister C, Chautard D, et al. (2003). «Immunocyt test improves the diagnostic accuracy of urinary cytology: results of a French multicenter study.» J Urol 169(3): 921-924.Google Scholar
  96. Pham HT, Block NL, et al. (1997). «Tumour-derived hyaluronidase: a diagnostic urine marker for high-grade bladder cancer.» Cancer Res 57: 778-781.Google Scholar
  97. Retz M, Lehmann J, et al. (2003). «Mucin 7 and cytokeratin 20 as new diagnostic urinary markers for bladder tumour.» J Urol 169: 86-89.Google Scholar
  98. Retz M, Geschwend J-E, Maisch P (2016) «Kurzform der S3-Leitlinie Harnblasenkarzinom» Urologie 55: 1173-1187Google Scholar
  99. Ribal MJ, Mengual L, et al. (2016). «Gene expression test for the non-invasive diagnosis of bladder cancer: A prospective, blinded, international and multicenter validation study.» Eur J Cancer 54: 131-8.Google Scholar
  100. Rigaud J, Leger A, et al. (2015). «Development of Predictive Value of Urinary Cytokine Profile Induced During Intravesical Bacillus Calmette-Guerin Instillations for Bladder Cancer.» Clin Genitourin Cancer 13(4): e209-15.Google Scholar
  101. Ritter R, Hennenlotter J, et al. (2014). «Evaluation of a new quantitative point-of-care test platform for urine-based detection of bladder cancer.» Urol Oncol 32(3): 337-44.Google Scholar
  102. Roupret M, Hupertan V, et al. (2008). «A comparison of the performance of microsatellite and methylation urine analysis for predicting the recurrence of urothelial cell carcinoma, and definition of a set of markers by Bayesian network analysis.» BJU Int 101(11): 1448-53.Google Scholar
  103. Sanchez-Carbayo M, Herrero E, et al. (1999). «Comparative sensitivity of urinary CYFRA 21-1, urinary bladder cancer antigen, tissue polypeptide antigen and NMP22 to detect bladder cancer.» J Urol 162: 1951-1956.Google Scholar
  104. Sapre N, Anderson PD, et al. (2014). «Gene-based urinary biomarkers for bladder cancer: an unfulfilled promise?» Urol Oncol 32(48): e9-e17.Google Scholar
  105. Sarosdy MF, Schellhammer P, et al. (2002). «Clinical evaluation of a multi-target fluorescent in situ hybridization assay for detection of bladder cancer.» J Urol 168: 1950-1954.Google Scholar
  106. Sawczuk IS, Pickens CL, et al. (2002). «DD23 Biomarker: a prospective clinical assessment in routine urinary cytology specimens from patients being monitored for TCC.» Urol Oncol 7: 185-190.Google Scholar
  107. Scales Ch D, Dahm Ph, Sultan S, Campbell D, Deveraux PJ (2008) «How to use an article about a diagnostic test» J Urol 180: 469-476Google Scholar
  108. Schamhart DH, de Reijke TM, et al. (1998). «The Bard BTA test: its mode of action, sensitivity and specificity compared to cytology of voided urine in the diagnosis of superficial bladder cancer.» Eur Urol 34(2): 99-106.Google Scholar
  109. Schmetter BS, Habicht KK, et al. (1997). «A multicenter trial evaluation of the fibrin/finrinogen degradation products test for detection and monitoring of bladder cancer.» J Urol 158: 801-805.Google Scholar
  110. Schmitz-Drager BJ, Droller M, et al. (2015). «Molecular markers for bladder cancer screening, early diagnosis, and surveillance: the WHO/ICUD consensus.» Urol Int 94(1): 1-24.Google Scholar
  111. Schmitz-Dräger BJ, Nakamura S, et al. (1991). «Monoclonal antibody Due ABC3 directed against transitional cell carcinoma. Prospective trial on the diagnostic value of immunocytology using monoclonal antibody Due ABC3.» J Urol 146: 1521-1524.Google Scholar
  112. Seripa D, Parrella P, et al. (2001). «Sensitive detection of transitional cell carcinoma of the bladder by microsatellite analysis of cells exfoliated in urine.» Int J Cancer 95(6): 364-9.Google Scholar
  113. Shariat SF, Ashfaq R, et al. (2005). «Expression of survivin and apoptotic biomarkers in benign prostatic hyperplasia.» J Urol 174: 2046-2050.Google Scholar
  114. Shariat SF, Casella R, et al. (2004). «Urine detection of survivin is a sensitive marker for the noninvasive diagnosis of bladder cancer.» J Urol 171: 626-630.Google Scholar
  115. Shariat SF, Marberger MJ, et al. (2006). «Variability in performance of nuclear matrix protein 22 for detection of bladder cancer.» J Urol 176: 919-926.Google Scholar
  116. Sheinfeld J, Reuter VE, et al. (1990). «Enhanced bladder cancer detection with the Lewis X antigen as a marker of neoplastic transformation.» J Urol 143: 285-288.Google Scholar
  117. Shen C, Sun Z, et al. (2015). «Developing urinary metabolomic signatures as early bladder cancer diagnostic markers.» OMICS 19(1): 1-11.Google Scholar
  118. Siracusano S, Niccolini B, et al. (2005). «The simultaneous use of telomerase, cytokeratin 20 and CD4 for bladder cancer detection in urine.» Eur Urol 47(3): 327-333.Google Scholar
  119. Skacel M, Fahmy M, et al. (2003). «Multitarget fluorescence in situ hybridization assay detects transitional cell carcinoma in the majority of patients with bladder cancer and atypical or negative urine cytology.» J Urol 169: 2101-2105.Google Scholar
  120. Smith DS, Wheeler MA, et al. (2001). «Urine detection of survivin and diagnosis of bladder cancer.» JAMA 285: 324-326.Google Scholar
  121. Snowdon J, Boag S, et al. (2013). «A pilot study of urinary microRNA as a biomarker for urothelial cancer.» Can Urol Assoc J 7(1-2): 28-32.Google Scholar
  122. Southgate J, Harnden P, et al. (1999). «Cytokeratin expression patterns in normal and malignant urothelium: A review of the biological and diagnostic implications.» Histol Histopathol 14: 657-664.Google Scholar
  123. Srivastava AK, Singh PK, et al. (2014). «Clinical utility of urinary soluble Fas in screening for bladder cancer.» Asia Pac J Clin Oncol 12(2): e215-21.Google Scholar
  124. Srivastava AK, Singh PK, et al. (2014). «Evaluation of urinary XIAP as a diagnostic biomarker of carcinoma of urinary bladder.» Tumour Biol 35(8): 8243-8.Google Scholar
  125. Stampfer DS, Carpinito GA, et al. (1996). «Evaluation of NMP22 in the detection of transitional cell carcinoma of the urinary tract.» J Urol 156: 1280-1285.Google Scholar
  126. Steiner G, Schoenberg MP, et al. (1997). «Detection of bladder cancer recurrence by microsatellite analysis of urine.» Nat Med 3(6): 621-624.Google Scholar
  127. Steiner G, Schoenberg MP, et al. (1997). «Detection of bladder cancer recurrence by microsatellite analysis of urine.» Nat Med 3(6): 621-4.Google Scholar
  128. Steiner H, Bergmeister M, et al. (2008). «Early results of bladder-cancer screening in a high-risk population of heavy smokers.» BJU Int 102(3): 291-6.Google Scholar
  129. Stieber P, Schmeller N, et al. (1996). «Clinical relevance of CYFRA 21-1, TPA-IRMA and TPA-LLA-mat in urinary bladder cancer.» Anticancer Res 16: 3793-3797.Google Scholar
  130. Stieber P, Schmeller N, et al. (1996). «Clinical relevance of CYFRA 21-1, TPA-IRMA and TPA-LIA-mat in urinary bladder cancer.» Anticancer Res 16: 3793-3798.Google Scholar
  131. Sylvester, R. J., A. P. van der Meijden, et al. (2006). «Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials.» Eur Urol 49(3): 466-5; discussion 475-7.Google Scholar
  132. Todenhofer T, Hennenlotter J, et al. (2014). «Stepwise application of urine markers to detect tumor recurrence in patients undergoing surveillance for non-muscle-invasive bladder cancer.» Dis Markers 2014: 973406.Google Scholar
  133. Todenhofer T, Hennenlotter J, et al. (2012). «Combined application of cytology and molecular urine markers to improve the detection of urothelial carcinoma.» Cancer Cytopathol 121(5): 252-60.Google Scholar
  134. Urquidi V, Goodison S, et al. (2012). «A candidate molecular biomarker panel for the detection of bladder cancer.» Cancer Epidemiol Biomarkers Prev 21(12): 2149-58.Google Scholar
  135. van der Aa MN, Zwarthoff EC, et al. (2009). «Microsatellite analysis of voided-urine samples for surveillance of low-grade non-muscle-invasive urothelial carcinoma: feasibility and clinical utility in a prospective multicenter study (Cost-Effectiveness of Follow-Up of Urinary Bladder Cancer trial [CEFUB]).» Eur Urol 55(3): 659-67.Google Scholar
  136. van der Poel HG, van Balken MR, et al. (1998). «Bladder wash cytology, quantitative cytology and the qualitative BTA test in patients with superficial bladder cancer.» Urology 51: 44-50.Google Scholar
  137. van Kessel KE, Beukers W, et al. (2017). «Validation of a DNA Methylation-Mutation Urine Assay to Select Patients with Hematuria for Cystoscopy.» J Urol 197(3 Pt 1): 590-595.Google Scholar
  138. van Kessel KE, Kompier LC, et al. (2013). «FGFR3 mutation analysis in voided urine samples to decrease cystoscopies and cost in nonmuscle invasive bladder cancer surveillance: a comparison of 3 strategies.» J Urol 189(5): 1676-81.Google Scholar
  139. van Kessel KE, Van Neste L, et al. (2016). «Evaluation of an Epigenetic Profile for the Detection of Bladder Cancer in Patients with Hematuria.» J Urol 195(3): 601-7.Google Scholar
  140. Van Le TS, Myers J, et al. (2004). «Functional characterization of the bladder cancer marker BLCA-4.» Clin Cancer Res 10: 1384-1391.Google Scholar
  141. van Oers JM, Lurkin I, et al. (2005). «A simple and fast method for the simultaneous detection of nine fibroblast growth factor receptor 3 mutations in bladder cancer and voided urine.» Clin Cancer Res 11(21): 7743-8.Google Scholar
  142. van Rhijn BW, van der Poel HG, et al. (2000). «Presence of carcinoma in situ and high 2C-deviation index are the best predictors of invasive transitional cell carcinoma of the bladder in patients with high-risk Quanticyt.» Urology 55: 363-367.Google Scholar
  143. van Rhijn BW, van der Poel HG, et al. (2005). «Urine markers for bladder cancer surveillance: a systematic review.» Eur Urol 47(6): 736-48.Google Scholar
  144. van Rhijn BW, van der Poel HG, et al. (2005). «Urine markers for bladder cancer surveillance: a systematic review.» Eur Urol 47(6): 736-748.Google Scholar
  145. Vlahou A, Schellhammer PF, et al. (2001). «Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine.» Am J Pathol 158(4): 1491-1502.Google Scholar
  146. von Rundstedt FC, Rajapakshe K, et al. (2016). «Integrative Pathway Analysis of Metabolic Signature in Bladder Cancer: A Linkage to The Cancer Genome Atlas Project and Prediction of Survival.» J Urol 195(6): 1911-9.Google Scholar
  147. Wang XS, Zhang Z, et al. (2006). «Rapid identification of UCA1 as a very sensitive and specific unique marker for human bladder carcinoma.» Clin Cancer Res 12(16): 4851-8.Google Scholar
  148. Weikert S, Christoph F, et al. (2005). «Quantitative analysis of survivin mRNA expression in urine and tumor tissue of bladder cancer patients and its potential relevance for disease detection and prognosis.» Int J Cancer 116(1): 100-104.Google Scholar
  149. Willis CM, Church SM, et al. (2004). «Olfactory detection of human bladder cancer by dogs: proof of principle study.» Brit Med J 329: 712-718.Google Scholar
  150. Wittmann BM, Stirdivant SM, et al. (2014). «Bladder cancer biomarker discovery using global metabolomic profiling of urine.» PLoS One 9(12): e115870.Google Scholar
  151. Yamada Y, Enokida H, et al. (2011). «MiR-96 and miR-183 detection in urine serve as potential tumor markers of urothelial carcinoma: correlation with stage and grade, and comparison with urinary cytology.» Cancer Sci 102(3): 522-9.Google Scholar
  152. Yang X, Huang H, et al. (2013). «Diagnostic value of bladder tumor fibronectin in patients with bladder tumor: a systematic review with meta-analysis.» Clin Biochem 46(15): 1377-82.Google Scholar
  153. Yao WJ, Chang CJ, et al. (1995). «Significance of urinary tissue polypeptide specific antigen (TPS) determination in patients with urothelial carcinoma.» Anticancer Res 15: 2819-2823.Google Scholar
  154. Zaak D, Karl A, et al. (2005). «Diagnosis of urothelial carcinoma of the bladder using fluorescence endoscopy.» BJU Int 96(2): 217-222.Google Scholar
  155. Zhang YF, Wu DL, et al. (2004). «Tree analysis of mass spectral urine profiles discriminates transitional cell carcinoma of the bladder from noncancer patient.» Clin Biochem 37(9): 772-779.Google Scholar
  156. Zhou Y, Song R, et al. (2017). «Discovery and validation of potential urinary biomarkers for bladder cancer diagnosis using a pseudotargeted GC-MS metabolomics method.» Oncotarget.Google Scholar
  157. Zuiverloon TC, van der Aa MN, et al. (2010). «Fibroblast growth factor receptor 3 mutation analysis on voided urine for surveillance of patients with low-grade non-muscle-invasive bladder cancer.» Clin Cancer Res 16(11): 3011-8.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2018

Authors and Affiliations

  1. 1.Direktor der Urologischen Klinik und Poliklinik Universität RostockRostockDeutschland

Personalised recommendations