Skip to main content

Alkaliphile

  • Chapter
  • First Online:
Extremophile Mikroorganismen
  • 2206 Accesses

Zusammenfassung

Lebensräume, die dauerhaft alkalische Bedingungen mit pH-Werten über pH 9 aufweisen, werden primär von alkaliphilen und alkalitoleranten Mikroorganismen besiedelt. Die am besten untersuchten alkalischen Lebensräume stellen Sodaseen dar, die durch die Akkumulation von Natrium(hydrogen)carbonat primär in warmen ariden Gebieten entstehen. In diesen Sodaseen gibt es vielfach eine hohe Primärproduktionsrate durch Filamente-bildende Sauerstoff-produzierende Cyanobakterien. Der Abbau des gebildeten organischen Materials wird insbesondere durch Archaeen (z. B. aus den Gattungen Natronobacterium oder Natronococcus) und Gram-positive Bakterien (insbesondere aus der Gattung Bacillus „sensu-latu“) hervorgerufen. Alkalische Bedingungen können einerseits die Stabilität vieler (insbesondere polymerer) Zellbestandteile herabsetzen und andererseits die für Atmungsprozesse und Stofftransporte wichtigen Protonengradienten beeinflussen. Alkaliphile und alkalitolerante Mikroorganismen halten den pH-Wert ihres Cytoplasmas deutlich unterhalb des pH-Werts der Umgebung. Hieran sind neben spezifischen Zellwandstrukturen vielfach von Natrium-Ionen abhängige Protonen-Antiporter oder Symporter beteiligt. Eine kommerzielle Nutzung alkaliphiler Bakterien findet insbesondere bei der Gewinnung alkalistabiler Enzyme (z. B. für die Waschmittelproduktion) und Nahrungsergänzungsstoffen statt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Affan M-A, Lee D-W, Al-Harbi SM, Kim H-J, Abdulwassi NI, Heo S-J et al (2015) Variation of Spirulina maxima biomass production in different depths of urea-used culture medium. Braz J Microbiol 46:991–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aino K, Hirota K, Matsuno T, Morita N, Nodasaka Y, Fujiwara T et al (2008) Bacillus polygoni sp. nov., a moderately halophilic, non-motile obligate alkaliphile isolated from indigo balls. Int J Syst Evol Microbiol 58:120–124

    Article  CAS  PubMed  Google Scholar 

  • Aino K, Narihiro T, Minamida K, Kamagata Y, Yoshimune K, Yumoto I (2010) Bacterial community characterization and dynamics of indigo fermentation. FEMS Microbiol Ecol 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Aono R, Ito M, Machida T (1999) Contribution of the cell wall component teichuronopeptide to pH homeostasis and alkaliphily in the alkaliphile Bacillus lentus C-125. J Bacteriol 181:6600–6606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bai W, Xue Y, Zhou C, Ma Y (2015) Cloning, expression, and characterization of a novel alkali-tolerant xylanase from alkaliphilic Bacillus sp. SN5. Biotechnol Appl Biochem 62:208–217

    Article  CAS  PubMed  Google Scholar 

  • Brito EMS, Piñón-Castillo HA, Guyoneaud R, Caretta CA, Gutiérrez-Corona JF, Duran R et al (2013) Bacterial biodiversity from anthropogenic extreme environments: a hyper-alkaline and hyper-saline industrial residue contaminated by chromium and iron. Appl Microbiol Biotechnol 97:369–378

    Article  CAS  PubMed  Google Scholar 

  • Clejan S, Krulwich TA, Mondrus KR, Seo-Young D (1986) Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus spp. J Bacteriol 168:334–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLeon KB, Gerlach R, Peyton BM, Fields MW (2013) Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park. Front Microbiol 4:Article 330

    Google Scholar 

  • Denizci AA, Kazan D, Erarslan A (2010) Bacillus marmarensis sp. nov., an alkaliphilic, protease-producing bacterium isolated from mushroom compost. Int J Syst Evol Microbiol 60:1590–1594

    Article  CAS  PubMed  Google Scholar 

  • Dimroth P, Cook GM (2004) Bacterial Na+- or H+-coupled ATP synthases operating at low electrochemical potential. Adv Microb Physiol 49:175–218

    Article  CAS  PubMed  Google Scholar 

  • Dunkley EA, Guffanti AA, Clejan S, Krulwich TA (1991) Facultative alkaliphiles lack fatty acid desaturase activity and lose the ability to grow at near-neutral pH when supplemented with an unsaturated fatty acid. J Bacteriol 173:1331–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson SA, Keis S, Cook GM (2006) Biochemical and molecular characterization of a Na+-translocating F1F0-ATPase from the thermoalkaliphilic bacterium Clostridium paradoxum. J Bacteriol 188:5045–5054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira LS, Rodrigues MS, Converti A, Sato S, Carvalho JCM (2012) Kinetic and growth parameters of Arthrospira (Spirulina) platensis cultivated in tubular photobioreactors under different cell circulation systems. Biotechnol Bioeng 109:444–450

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa M, Fackelmayer OJ, Liu J, Krulwich TA, Hicks DB (2010) The ATP-synthase a-subunit of extreme alkaliphiles is a distinct variant. Mutations in the critical alkaliphile-specific residue Lys-180 and other residues that support alkaliphile oxidative phosphorylation. J Biol Chem 285:32.105–32.115

    Google Scholar 

  • Grant WD, Mwatha WE, Jones BE (1990) Alkaliphiles: ecology, diversity and applications. FEMS Microbiol Rev 75:255–270

    Article  CAS  Google Scholar 

  • Hicks DB, Liu J, Jujisawa M, Krulwich TA (2010) F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. Biochim Biophys Acta 1797:1362–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano K, Ishihara T, Ogasawara S, Maeda H, Abe K, Nakajima T, Yamagata Y (2006) Molecular cloning and characterization of a novel γ-CGTase from alkalophilic Bacillus sp. Appl Microbiol Biotechnol 70:193–201

    Article  CAS  PubMed  Google Scholar 

  • Hirota N, Imae Y (1983) Na+-driven flagellar motors of an alkalophilic Bacillus strain YN-1. J Biol Chem 258:10.577–10.581

    Google Scholar 

  • Hoover RB, Pikuta EV, Bej AK, Marsic D, Whitman WB, Tang J, Krader P (2003) Spirochaeta americana sp. nov., a new haloalkaliphilic, obligately anaerobic spirochaete isolated from soda Mono Lake in California. Int J Syst Evol Microbiol 53:815–821

    Article  CAS  PubMed  Google Scholar 

  • Horikoshi K (1999) Alkaliphiles. Kodansha Ltd, Tokyo

    Google Scholar 

  • Ibrahim ASS, Al-Salamah AA, El-Badawi YB, El-Tayeb MA, Antranikian G (2015) Detergent-, solvent- and salt-compatible thermoactive alkaline serine protease from halotolerant alkaliphilic Bacillus sp. NPST-AK15: purification and characterization. Extremophiles 19:961–971

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Xu H, Guffanti AA, Wie Y, Zvi L, Clapham DE, Krulwich TA (2004) The voltage-gated Na+ channel NavBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus. Proc Natl Acad Sci USA 101:10.566–10.571

    Google Scholar 

  • Janto B, Ahmed A, Ito M, Liu J, Hicks DB, Pagni S et al (2011) Genome of alkaliphilic Bacillus pseudofirmus OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4. Environ Microbiol 13:3289–3309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200

    Article  CAS  PubMed  Google Scholar 

  • Kelley DC, Karson JA, Früh-Green GL, Yoerger DR, Shank TM, Butterfield DA et al (2005) A serpentinite-hosted ecosystem: the lost city hydrothermal field. Science 307:1428–1434

    Article  CAS  PubMed  Google Scholar 

  • Kelly RM, Leemhuis H, Rozeboom HJ, van Oosterwijk N, Dijkstra BW, Dijkhuizen L (2008) Elimination of competing and coupling side reactions of a cyclodextrin glucanotransferase by directed evolution. Biochem J 413:517–525

    Article  CAS  PubMed  Google Scholar 

  • Krulwich TA, Guffanti AA (1989) Alkalophilic bacteria. Annu Rev Microbiol 43:435–463

    Article  CAS  PubMed  Google Scholar 

  • Krulwich TA, Ito M, Gilmour R, Hicks DB, Guffanti AA (1998) Energetics of alkaliphilic Bacillus species: physiology and molecules. Adv Microb Physiol 40:401–438

    Article  CAS  PubMed  Google Scholar 

  • Krulwich TA, Ito M, Guffanti AA (2001) The Na+-dependence of alkaliphily in Bacillus. Biochim Biophys Acta 1505:158–168

    Article  CAS  PubMed  Google Scholar 

  • Mesbah NM, Wiegel J (2008) Life at extreme limits. The anaerobic halophilic alkalithermophiles. NY Acad Sci 1125:44–57

    Article  CAS  Google Scholar 

  • Meyer-Dombard DR, Woycheese KM, Yargiçoğlu EN, Cardace D, Shock EL, Güleçal-Pektas Y, Temel M (2015) High pH microbial ecosystems in a newly discovered, ephemeral, serpentinizing fluid seep at Yanartaş (Chimera), Turkey. Front Microbiol 5:Article 723

    Google Scholar 

  • Muntyan MS, Cherepanov DA, Malinen AM, Bloch DA, Sorokin DY, Severina II et al (2015) Cytochrome cbb3 of Thioalkalivibrio is a Na+-pumping cytchrome oxidase. Proc Natl Acad Sci USA 112:7695–7700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717:67–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preiss L, Hicks DB, Suzuki S, Meier T, Krulwich TA (2015) Alkaliphilic bacteria with impact on industrial applications, concepts of early life forms, and bioenergetics of ATP synthesis. Front Bioeng Biotechnol 3:Article 75

    Google Scholar 

  • Preiss L, Klyszejko AL, Hicks DB, Liu J, Fackelmayer OJ, Yildiz Ö, Krulwich TA, Meier T (2013) The c-ring stoichiometry of ATP synthase is adapted to cell physiological requirements of alkaliphilic Bacillus pseudofirmus OF4. Proc Natl Acad Sci USA 110:7874–7879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roadcap GS, Sanford RA, Jin Q, Pardinas JR, Bethke CM (2006) Extremely alkaline (pH >12) ground water hosts diverse microbial community. Ground Water 44:511–517

    Article  CAS  PubMed  Google Scholar 

  • Roussel EG, Konn C, Charlou JL, Donval JP, Fouquet Y, Querellou J, Prieur D, Bonavita MA (2011) Comparison of microbial communities associated with three ultramafic hydrothermal systems. FEMS Microbiol Ecol 77:647–665

    Article  CAS  PubMed  Google Scholar 

  • Russell MJ, Hall AJ, Martin W (2010) Serpentinization as a source of energy at the origin of life. Geobiol 8:355–371

    Article  CAS  Google Scholar 

  • Schagerl M (2016) Soda Lakes of East Africa. Springer, Berlin

    Book  Google Scholar 

  • Sili C, Torzillo G, Vonshak A (2012) Arthrospira (Spirulina) In: Whitton BA (Hrsg) Ecology of Cyanobacteria II: their diversity in space and time, Springer, Berlin, S 677−705

    Google Scholar 

  • Sorokin DY, Abbas B, Geleijnse M, Pimenov NV, Sukhacheva MV, Loosdrecht MC van (2015) Methanogenesis at extremely haloalkaline conditions in the soda lakes of Kulunda Steppe (Altai, Russia) FEMS Microbiol Ecol 91: pii: fiv016. https://doi.org/10.1093/femsec/fiv016

  • Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD, Muyzer G (2014) Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18:791–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorokin DY, Kuenen JG (2005) Chemolithotrophic haloalkaliphiles from soda lakes. FEMS Microbiol Ecol 52:287–295

    Article  CAS  PubMed  Google Scholar 

  • Sturr MG, Guffanti AA, Krulwich TA (1994) Growth and bioenergetics of alkaliphilic Bacillus firmus OF4 in continuous culture at high pH. J Bacteriol 176:3111–3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki, S, Ishii S, Cheung A, Tenneyanger G, Kuenen JG, Nealson KH (2013) Microbial diversity in The Cedars, an ultrabasic, ultrareducing, and low salinity serpentinizing ecosystem. Proc Natl Acad Sci USA 110:15.336–15.341

    Google Scholar 

  • Suzuki S, Kuenen JG, Schipper K, van der Velde S, Ishii S, Wu A et al (2014) Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site. Nature Comm. https://doi.org/10.1038/ncomms4900

    Google Scholar 

  • Takai K, Moser DP, Onstott TC, Spoelstra N, Pfiffner SM, Dohnalkova A, Fredrickson JK (2001) Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine. Int J Syst Evol Microbiol 51:1245–1256

    Article  CAS  PubMed  Google Scholar 

  • Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, Masui N et al (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28:4317–4331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terahara N, Sano M, Ito M (2012) A Bacillus flagellar motor that can use both Na+ and K+ as a coupling ion is converted by a single mutation to use only Na+. PLoS ONE 7:e46248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyoshima M, Aikawa S, Yamagishi T, Kondo A, Kawai H (2015) A pilot-scale closed culture system for multicellular cyanobacterium Arthrospira platensis NIES-39. J Appl Phycol 27:2191–2202

    Article  CAS  PubMed  Google Scholar 

  • Yumoto I (2007) Environmental and taxonomic biodiversities of Gram-positive alkaliphiles. In: Gerday C, Glansdorff N (Hrsg) Physiology and Biochemistry of Extremophiles. ASM Press, Washington DC

    Google Scholar 

  • Wang ZX, Hicks DB, Guffanti AA, Baldwin K, Krulwich TA (2004) Replacement of amino acid sequence features of a- and c-subunits of ATP synthases of alkaliphilic Bacillus with the Bacillus consensus sequence results in defective oxidative phosphorylation and non-fermentative growth at pH 10.5. J Biol Chem 279:26.546–26.554.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Stolz .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stolz, A. (2017). Alkaliphile. In: Extremophile Mikroorganismen. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55595-8_6

Download citation

Publish with us

Policies and ethics