Skip to main content

Acidophile

  • Chapter
  • First Online:
Extremophile Mikroorganismen

Zusammenfassung

Es gibt zahlreiche Beispiele für das Vorkommen saurer Biotope in unsere Umwelt, die entweder durch organische oder mineralische Säuren beeinflusst werden. Extrem saure Bedingungen mit pH-Werten unter 3 werden meistens durch Schwefelsäure hervorgerufen und finden sich insbesondere in vulkanischen oder durch Bergbauprozesse beeinflussten Gebieten. Säureliebende (acidophile) Organismen zeichnen sich durch ein bevorzugtes Wachstum bei pH-Werten unter pH 5 aus. In den vergangenen Jahren wurden eine Reihe von Bacteria, Archaea aber auch (einzelligen) Eukarya gefunden, die noch bei pH-Werten unter pH 3 zu wachsen vermögen. Derartig niedrige pH-Werte verursachen die Hydrolyse zahlreicher lebenswichtiger Zellbestandteile und beeinflussen die für Transportprozesse und ATP-Synthesen benötigten Protonengradienten. Acidophile Organismen erhalten durchgehend in ihrem Cytoplasma pH-Werte, die deutlich über dem Umgebungs-pH liegen. Dies wird insbesondere durch Protonen-transportierende und Protonen-verbrauchende Reaktionen erreicht. Acidotolerante und acidophile Organismen werden in unterschiedlichen Prozessen bei der Lebensmittel-Herstellung (z. B. Essig, Citronensäure), der Produktion von Fein-Chemikalien (z. B. Itaconsäure) und der Gewinnung von Metallen (Kupfer, Gold. u. a.) eingesetzt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Baker BJ, Comolli LR, Dick GJ, Hauser LJ, Hyatt D, Dill BD, Land ML, VerBerkmoes NC, Hettich RL, Banfield JF (2010) Enigmatic, ultrasmall, uncultivated archaea. Proc Natl Acad Sci USA 107:8806–8811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171

    Article  CAS  PubMed  Google Scholar 

  • Belli WA, Marquis RE (1991) Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture. Appl Environ Microbiol 57:1134–1138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowen BB, Benison KC (2009) Geochemical characteristics of naturally acid and alkaline saline lakes in southern Western Australia. Appl Geochem 24:268–284

    Article  CAS  Google Scholar 

  • Brierley CL, Brierley JA (2013) Progress in bioleaching: partB: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 97:7543–7552

    Article  CAS  PubMed  Google Scholar 

  • Cárdenas JP, Valdés J, Quatrini R, Duarte F, Kolmes DS (2010) Lessons from the genomes of extremely acidophilic bacteria and archaea with special emphasis on bioleaching microorganisms. Appl Microbiol Biotechnol 88:605–620

    Article  PubMed  Google Scholar 

  • Casiano-Colón A, Marquis RE (1988) Role of arginine deiminase system in protecting oral bacteria and an enzymatic basis for acid tolerance. Appl Environ Microbiol 54:1318–1324

    PubMed  PubMed Central  Google Scholar 

  • Chang Y-Y, Cronan JE (1999) Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol Microbiol 33:249–259

    Article  CAS  PubMed  Google Scholar 

  • Cobley JG, Cox JC (1983) Energy conservation in acidophilic bacteria. Microbiol Rev 47:579–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S et al (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–883

    Article  CAS  PubMed  Google Scholar 

  • Foster JW, Moreno M (1999) Inducible acid tolerance mechanisms in enteric bacteria. In: Chadwick DJ, Cardew G (Hrsg) Bacterial responses to pH. Novartis Foundation Symposium 221, Wiley, S 55–69

    Google Scholar 

  • Fütterer O, Angelov A, Liesegang H, Gottschalk G, Schepers C, Dock C, Antranikian G, Liebl W (2004) Genome sequence of Picrophilus torridus and its implication for life around pH 0. Proc Natl Acad Sci USA 101:9091–9096

    Article  PubMed  PubMed Central  Google Scholar 

  • Glazer AN, Nikaido H (2007) Microbial biotechnology, 2. Aufl. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Golyshina OV, Timmis KN (2005) Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Env Microbiol 7:1277–1288

    Article  CAS  Google Scholar 

  • González-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R (2003) Microbial ecology of an extremely acidic environment, the Tinto River. Appl Environ Microbiol 69:4853–4865

    Article  PubMed  PubMed Central  Google Scholar 

  • Gross S, Robbins EI (2000) Acidophilic and acid-tolerant fungi and yeasts. Hydrobiologia 433:91–109

    Article  Google Scholar 

  • Hallberg KB, Johnson DB (2001) Biodiversity of acidophilic prokaryotes. Adv Appl Microbiol 49:37–84

    Article  CAS  PubMed  Google Scholar 

  • Hölker U, Bend J, Pracht R, Tetsch L, Müller T, Höfer M, Hoog GS de (2004) Hortaea acidophila, a new acid-tolerant black yeast from lignite. Antonie Van Leeuwenhoek 86:287–294

    Article  PubMed  Google Scholar 

  • Jentsch H, Hombach A, Beetke E, Jonas L (2002) Quantitative transmission electron microscopic study of dental plaque- an in vivi study with different mouthrinses. Ultrastruct Pathol 26:309–313

    Article  PubMed  Google Scholar 

  • Johnson DB (2007) Physiology and ecology of acidophilic microorganisms. In: Gerday C, Glansdorff N (Hrsg) Physiology and biochemistry of extremophiles. ASM Press, Washington DC, S 257–270

    Google Scholar 

  • Johnson DB (2014) Biomining – biotechnologies for extracting and recovering metals from ores and waste materials. Curr Opin Biotechnol 30:24–31

    Article  CAS  PubMed  Google Scholar 

  • Jones RM, Johnson DB (2015) Acidithrix ferrooxidans gen. nov., sp. nov.; a filamentous and obligately heterotrophic, acidophilic member of the Actinobacteria that catalyzes dissimilatory oxido-reduction of iron. Res Microbiol 166:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kanjee U, Houry WA (2013) Mechanism of acid resistance in Escherichia coli. Annu Rev Microbiol 67:65–81

    Article  CAS  PubMed  Google Scholar 

  • Kleinberg I (2002) A mixed-bacteria ecological approach to understanding the role of the oral bacteria in dental caries causation: an alternative to Streptococcus mutans and the specific-plaques hypothesis. Crit Rev Oral Biol Med 13:108–125

    Article  CAS  PubMed  Google Scholar 

  • Klement T, Büchs J (2013) Itaconic acid – a biotechnological process in change. Biores Technol 135:422–431

    Article  CAS  Google Scholar 

  • Loesche WJ (1986) Role of Streptococcus mutans in human dental decay. Microbiol Rev 50:353–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loy A, Mandl A, Barton L (2010) Geomicrobiology: molecular and environmental perspective. Springer, Berlin

    Google Scholar 

  • Magnuson JK, Lasure LL (2004) Organic acid production by filamentous fungi. In: Tkacz JS, Lange L (Hrsg) Advances in fungal biotechnology for industry, agriculture, and medicine. Kluwer Academic/Plenum, Boston

    Google Scholar 

  • Matin A (1999) pH homeostasis in acidophiles. In: Chadwick DJ, Cardew G (Hrsg) Bacterial responses to pH. Novartis Foundation Symposium 221, Wiley, S 152–163

    Google Scholar 

  • Méndez-Garcia C, Peláez AI, Mesa V, Sánchez J, Golyshina OV, Ferrer M (2015) Microbial diversity and metabolic networks in acid mine drainage habitats. Front Microbiol 6:Article 475

    Google Scholar 

  • O’Connell M, McNally C, Richardson MG (2010) Biochemical attack on concrete in wastewater applications: a state of the art review. Cement Concr Compos 32:479–485

    Article  Google Scholar 

  • Okibe N, Gericke M, Hallberg KB, Johnson DB (2003) Enumeration and characterization of acidophilic microorganisms isolated from a pilot stirred-tank bioleaching operation. Appl Environ Microbiol 69:1936–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papagianni M (2007) Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling. Biotechnol Adv 25:244–263

    Article  CAS  PubMed  Google Scholar 

  • Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, Op den Camp HJM (2007) Methanotrophy below pH1 by a new Verrucomicrobia species. Nature 450:874–879

    Article  CAS  PubMed  Google Scholar 

  • Raspor P, Goranovič D (2008) Biotechnological applications of acetic acid bacteria. Crit Rev Biotechnol 28:101–124

    Article  CAS  PubMed  Google Scholar 

  • Rawlings DE, Silver S (1995) Mining with microbes. Nature Biotechnol 13:773–778

    Article  CAS  Google Scholar 

  • Reineke W, Schlömann M (2015) Umweltmikrobiologie, 2. Aufl. Springer, Berlin

    Google Scholar 

  • Richard HT, Foster JW (2003) Acid resistance in Escherichia coli. Adv Appl Microbiol 52:167–186

    Article  CAS  PubMed  Google Scholar 

  • Roger M, Castelle C, Guiral M, Infossi P, Lojou E, Giudici-Orticoni M-T, Ilbert M (2012) Mineral respiration under extreme acidic conditions: from a supramolecular organization to a molecular adaptation in Acidithiobacillus ferrooxidans. Biochem Soc Trans 40:1324–1329

    Article  CAS  PubMed  Google Scholar 

  • Russell JB (1991) Resistance of Streptococcus bovis to acetic acid at low pH: relationship between intracellular pH and anion accumulation. Appl Environ Microbiol 57:255–259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sahm H, Antranikian G, Stahmann K-P, Takors R (Hrsg) (2013) Industrielle Mikrobiologie. Springer Spektrum, Heidelberg, New York

    Google Scholar 

  • Schleper C, Puehler G, Holz I, Gambacorta A, Janekovic D, Santarius U, Klenk H-P, Zillig W (1995) Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol 177:7050–7059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schönknecht G, Chen W-H, Ternes CM, Barbier GG, Shrestha RP, Stanke M et al (2013) Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339:1207–1210

    Article  PubMed  Google Scholar 

  • Schrenk MO, Edwards KJ, Goodman RM, Hamers RJ, Banfield JF (1998) Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science 279:1519–1522

    Article  CAS  PubMed  Google Scholar 

  • Segerer AH, Stetter KO (1992a) The order Sulfolobales. In: Balows A, Trüper HG, Dworkin M, Harders W, Schleifer K-H (Hrsg) The Prokaryotes, 2. Aufl. Springer, Berlin, S 684–701

    Google Scholar 

  • Segerer AH, Stetter KO (1992b) The genus Thermoplasma. In: Balows A, Trüper HG, Dworkin M, Harders W, Schleifer K-H (Hrsg) The Prokaryotes, 2. Aufl. Springer, Berlin, S. 712–718

    Google Scholar 

  • Spang A, Caceres EF, Ettema TJG (2017) Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science 357:eaaf3883

    Google Scholar 

  • Stevenson BS, Eichorst SA, Wertz JT, Schmidt TM, Breznak JA (2004) New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol 70:4748–4755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swings J (1991) The genera Acetobacter and Gluconobacter. In: Balows A, Trüper HG, Dworkin M, Harders W, Schleifer K-H (Hrsg) The Prokaryotes, 2. Aufl. Springer, Berlin, S 2268–2286

    Google Scholar 

  • Tapley TL, Körner JL, Barge MT, Hupfeld J, Schauerte JA, Gafni A, Jakob U, Bardwell BA (2009) Structural plasticity of an acid-activated chaperone allows promiscuous substrate binding. Proc Natl Acad Sci USA 106:5557–5562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vera M, Schippers A, Sand W (2013) Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation – part A. Appl Microbiol Biotechnol 97:7529–7541

    Article  CAS  PubMed  Google Scholar 

  • Weisse T, Laufenstein N, Weithoff G (2013) Multiple environmental stressors confine the ecological niche of the rotifer Cephalodella acidophila. Freshwater Biol 58:1008–1015

    Article  Google Scholar 

  • Wilke T, Vorlop KD (2001) Biotechnological production of itaconic acid. Appl Microbiol Biotechnol 56:289–295

    Article  Google Scholar 

  • Yakushi T, Matsushita K (2010) Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology. Appl Microbiol Biotechnol 86:1257–1265

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki A, Toyama K, Nakagiri A (2010) A new acidophilic fungus Teratosphaeria acidotherma (Capnodiales, Ascomycota) from a hot spring. Mycoscience 51:443–455

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Stolz .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stolz, A. (2017). Acidophile. In: Extremophile Mikroorganismen. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55595-8_5

Download citation

Publish with us

Policies and ethics