Uranmobilität im Grundwasser einer Wassergewinnung am Niederrhein

  • Frank Wisotzky
  • Nils Cremer
  • Stephan Lenk
Chapter

Zusammenfassung

Im Grundwasser der betroffenen Wassergewinnung wird Uran z. T. in höheren Konzentrationen bis zu maximal 33µg/l gemessen, auch wenn das Trinkwasser den Urangrenzwert von 10µg/l unterschreitet.

Literatur

  1. Alam MS, Cheng T (2014) Uranium release from sediment to groundwater – influence of water chemistry and insights into release mechanisms. J Contaminant Hydrology 164:72–87CrossRefGoogle Scholar
  2. Banning A, Cardona A, Rüde T (2012) Uranium and arsenic dynamics in volcano-sedimentary basins – an exemplary study in North. Central Mexico. Appl Geochemistry 27:2160–2172CrossRefGoogle Scholar
  3. BanninG A, Demmel T, Rüde T, Wrobel M (2013) Groundwater Uranium origin and fate control in a river valley aquifer. Environ Sci Technol 47:13941–13948CrossRefGoogle Scholar
  4. Banning A, Rüde T (2015) Apatite weathering as a geological driver of high uranium concentrations in groundwater. Appl Geochemistry 59:139–146CrossRefGoogle Scholar
  5. Bednar A, Medina V, Ulmer-Scholle D, Frey B, Johnson B, Brostoff W, Larson S (2007) Effects of organic matter on the distribution of uranium in soil and plant matrices. Chemosphere 70(2):237–247CrossRefGoogle Scholar
  6. Catalano JG, McKinley JP, Zachara JM, Heald SM, Smith SC, Brown Jr. GE (2006) Changes of uranium speciation through a depth sequence of contaminated Hanford sediments. Environ Sciece Technol 40(8):2517–2524Google Scholar
  7. Drever JI (1997) The geochemistry of natural waters. Prentice Hall, USA, 436 SGoogle Scholar
  8. Duff M, Hunter D, Bertsch P, Amrhein C (1999) Factors influencing uranium reduction and solubility in evaporation pond sediments. Biogeochemistry 45(1):95–114Google Scholar
  9. DVWK (1998) Hydrogeochemische Stoffsysteme, Teil 2, Schriften, Band, 117, 397 S.Google Scholar
  10. Echevarria G, Sheppard MI, Morel JL (2001) Effect of pH on the sorption of uranium in soils. J Environ Radioactiv 53:257–264CrossRefGoogle Scholar
  11. Fanghänel T, Neck V (2002) Aquatic chemistry and solubility phenomena of actinide oxides/hydroxides. Pure Appl Chem 74(10):1895–1908CrossRefGoogle Scholar
  12. Finch R, Murakami T (1999) Systematics and paragenesis of uranium minerals. Rev Mineral Geochem 38(1):91–179Google Scholar
  13. Finneran KT, Anderson RT, Nevin KP, Lovley DR (2002) Potential for bioremediation of uranium-contaminated aquifers with microbial U(VI)-reduction. Soil Sediment Sontam Int J 11(3):339–357CrossRefGoogle Scholar
  14. Gomez P, Garralon A, Buil B, Turrero MJ, Sanchez L, Cruz B (2006) Modeling of geochemical processes related to uranium mobilization in the groundwater of a uranium mine. Sci Total Environ 366:295–309CrossRefGoogle Scholar
  15. Herring JS (2013) Uranium and Thorium resources nuclear energy. In: Tsoulfanidis, N. Nuclear Energy Springer Verlag, New York 463–490Google Scholar
  16. Idiz E, Carisle D, Kaplan I (1986) Interaction between organic matter and trace metals in a uranium rich bog, Kern County, California. Appl Geochemistry 3:573–590CrossRefGoogle Scholar
  17. Ingham ES, Cook NJ, Cliff J, Ciobanu CL, Huddleston A (2014) A combined chemical, isotopic and microstructural study of pyrite from roll-front uranium deposits, Lake Eyre Basin, South Australia. Geochem et Cosmoch Acta 125:440–465CrossRefGoogle Scholar
  18. Kacmaz H, Nakoman ME (2009) Hydrochemical characteristics of shallow groundwater in aquifer containing uranyl phosphate minerals, in Köprübasi (Manisa) area, Turkey. Environ Earth Sci 59:449–457CrossRefGoogle Scholar
  19. Kübeck C (2015) Entwicklung der Nitratbelastung im Grund- und Rohwasser. Unveröffentlichter Bericht des IWW.Google Scholar
  20. Kurttio P, Auvinen A, Salonen L, Saha H, Pekkanen J, Mäkeläinen I, Väisänen S, Penttilä I, Komulainen H (2002) Renal Effects of Uranium in Drinking Water. Environ Health Perspect 110:337–342CrossRefGoogle Scholar
  21. Langmuir D (1997) Aqueous envirnmental geochemistry. Prentice Hall, USA, 600 SGoogle Scholar
  22. Mason B, Moore CB (1985) Grundzüge der Geochemie. Enke Verlag, Wiley and sons, New York, 340 SGoogle Scholar
  23. Merkel BJ, Planer-Friedrich B, Wolkersdorfer C (2002) Uranium in the aquatic environment. Springer Verlag, Berlin 1117 SCrossRefGoogle Scholar
  24. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC–A computer program for speciation, reaction-path, 1D-transport, and inverse geochemical calculations: U.S. geological survey water-resources investigations Report 99-4259, 312 SGoogle Scholar
  25. Regenspurg S, Margot-Roquier C, Harfouche M, Froidevaux P, Steinmann P, Junier P, Bernier-Latmani R (2010) Speciation of naturally-accumulated uranium in organic-rich soil of an alpine region (Switzerland). Geochim Cosmochim Acta 74:2082–2098CrossRefGoogle Scholar
  26. Senko JM, Istok JD, Suflita JM, Krumholz LR (2002) In-Situ Evidenco of Uranium immobilization and remobilisation. Environ Sci Technol 36:1491–1496CrossRefGoogle Scholar
  27. Umweltbundesamt UBA (2012) Uran in Boden und Wasser. Texte 37:24 SGoogle Scholar
  28. WHO (2012) Uranium in drinking-water. WHO/SDE/WSH/03.04/118/Rev/1, 21 SGoogle Scholar
  29. Wiedemeier TH, Wilson JT, Kampbell DH, Miller RN, Hansen JE (1995) Technical protocol for implementing intrinsic remediation with long term monitoring for natural attenuation of fuel contamination dissolved in Groundwater, Vol. 2, DTIC documentGoogle Scholar
  30. Wu Y, Wang Y, Xie X (2014) Occurrence, behavior and distribution of high levels of uranium in shallow groundwater at Datong basin, northern China. Sci Total Environ 472:809–817CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2018

Authors and Affiliations

  • Frank Wisotzky
    • 1
  • Nils Cremer
    • 2
  • Stephan Lenk
    • 3
  1. 1.Fakultät für Geowissenschaften Angewandte Geologie/HydrogeologieRuhr-Universität BochumBochumDeutschland
  2. 2.ErftverbandBergheimDeutschland
  3. 3.ErftverbandBergheimDeutschland

Personalised recommendations