Skip to main content

The Concept of the Atom

  • Chapter
  • First Online:
Atoms, Molecules and Photons

Part of the book series: Graduate Texts in Physics ((GTP))

  • 7633 Accesses

Abstract

Our present knowledge about the size and internal structure of atoms is the result of a long development of ideas and concepts that were initially based both on philosophical speculations and on experimental hints, but were often not free of errors. Only during the 19th century did the increasing number of detailed and carefully planned experiments, as well as theoretical models that successfully explained macroscopic phenomena by the microscopic atomic structure of matter, could collect sufficient evidence for the real existence of atoms and therefore convinced more and more scientists. However, even around the year 1900, some well-reputed chemists, such as Wilhelm Ostwald (1853–1932), and physicists, e.g., Ernst Mach (1838–1916), still doubted the real existence of atoms. They regarded the atomic model as only a working hypothesis that could better explain many macroscopic phenomena, but should not be taken as reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See: W. Demtröder: Mechanics, Chap. 10. Springer 2017.

  2. 2.

    Experimental Physics, Vol. 2.

References

  1. I. Asimov, The History of Physics (Walker & Company, New York, 1984); B. Pullmann, The Atom in the History of Human Thought (Oxford University Press, Oxford, 2002)

    Google Scholar 

  2. J.D. Bernal, A History of Classical Physics (Barnes & Noble, Basking Ridge, N.J., 1997); J. McDonnell, The Concept of Atoms from Demokritus to John Dalton (Edwin Mellen Press, New York, 1992); J. Agassi, The Continious Revolution: A History of Physics from the Greeks to Einstein (McGraw Hills, New York, 1968); R.E. Peierls, Atomic History (Springer, Berlin, 1997)

    Google Scholar 

  3. R. Purrington, Physics in the Nineteenth Century (Rutgers University Press, Camden, N.J., 1997); C. Cercignani, Boltzmann, the Man Who Trusted Atoms (Oxford University Press, Oxford, 1999)

    Google Scholar 

  4. H. Krach, Quantum Generations: A History of Physics in the Twentieth Century (Princeton University Press, Princeton, 2002)

    Google Scholar 

  5. Clifford A. Pickover: Physics Book: From the Big Bang to Quantun Resurrection (Sterling Publisher Milestones, 2011)

    Google Scholar 

  6. J.Z. Buchwald, R. Fox eds: Oxford Handbook of the History of Physics (Oxford 2017)

    Google Scholar 

  7. J. Dalton, A New System of Chemical Philosophy (Bickerstaff London 1808) reproduced as facsimile by William Dawson & Sons, London, Science Classics Library (New York 1964) and Cambridge Library Collection, Cambridge 2010

    Google Scholar 

  8. R.D. Deslattes, The avogadro-constant. Ann. Rev. Phys. Chem. 31, 435 (1980)

    Article  ADS  Google Scholar 

  9. M. de Podesta et al., A low-uncertainty measurement of the Boltzmann constant. Metrologia 50, 354–376 (2013)

    Article  ADS  Google Scholar 

  10. D. Attwood, Soft X-Rays and Extrem UV-Radiation: Principles and Applications (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  11. P. Becker, Avogadro Constant Remeasured. PTB News 03.1. P. Becker et al., Large Scale Production of highly enriched \(^{28}{\text{Si}}\) for the Precise Determination of the Avogadro Constant. Meas. Sci. Technol. 17, 1854–1860 (2006)

    Google Scholar 

  12. D.R. White, J. Fischer, The Boltzmann constant and the new kelvin. Metrologia 52, 5 (2015)

    Article  Google Scholar 

  13. U. Bonse, M. Hart, An X-ray-interferometer. Appl. Phys. Lett. 6, 155 (1965). http://e1.physik.uni-dortmund.de/xtm/; B. Kramer (ed.), The Art of Measurement (VCH, Weinheim, 1988)

  14. https://en.wikipedia.org/wiki/Bubble_chamber

  15. W. Demtröder, Experimental Physics, vol. 1. Mechanics and Thermodynamics (Springer, Heidelberg, 2017)

    Google Scholar 

  16. A. Einstein, Investigations on the Theory of Brownian Motion (Dover, New York, 1956); A. Borodin, P. Salmimen, Handbook of Brownian Motion (Birkhäuser, Boston, 1996)

    Google Scholar 

  17. E. Kappler, Die Brown’sche Molekularbewegung. Naturwissenschaften 27, 649 (1939)

    Article  ADS  Google Scholar 

  18. K.S. Birdi, Scanning Probe Microscope: Applications in Science and Technology (CRC-Press, Boca Raton, 2003)

    Book  Google Scholar 

  19. St. Flegler, J. Heckman, K.L. Klomparens, Scanning and Transmission Electron Microscope (Oxford University Press, Oxford, 1995)

    Google Scholar 

  20. E.W. Müller, Feldemission, Ergebn. exakter Naturwiss. XXVII 290–360 (1953)

    Google Scholar 

  21. https://britannica.com/technology/field-emission-microscope

  22. R. Glaser Biophysics. An Introduction, 2nd edn. Springer (2012)

    Google Scholar 

  23. D.E. Evans, Measurement of Boltzmann Constant. Phys. Edu. 21, 5 (1986)

    Google Scholar 

  24. D.B. Williams, C.B. Carter, Transmission Electron Microscopy (Plenum Press, New York, 1996)

    Book  Google Scholar 

  25. R.F. Egerton, Physical Principles of Electron Microscopy: An Introduction to TEM, SEM and AEM (Springer, Berlin, 2008)

    Google Scholar 

  26. D. Chescoe, P.J. Goodhew, The Operation of Transmission and Scanning Electron Microscopy (Oxford Science Publications, Oxford, 1990)

    Google Scholar 

  27. D. Breger, The Art of the Scanning Electron Microscope (Columbia University Press, New York, 1995)

    Google Scholar 

  28. C.B. Gilmore, The Unseen Universe; Photographs from the Scanning Electron Microscope (Schocken Books, New York, 1974)

    Google Scholar 

  29. D.A. Bonnell (ed.), Scanning Tunneling Microscopy and Spectroscopy (VCH, Weinheim, 1993)

    Google Scholar 

  30. J.A. Stroscio, W.J. Kaiser (eds.), Scanning tunneling microscopy, Methods of Experimental Physics, vol. 27 (Academic, New York, 1993)

    Google Scholar 

  31. C. Bai, Scanning Tunneling Microscopy and its Applications, vol. 32 (Springer series in surface science (Springer, Berlin, 2000)

    Google Scholar 

  32. R. Wiesendanger, H.J. Guntherodt, Theory of STM and related Scanning Probe Methods, vol. 3 (Springer series in surface science (Springer, Berlin, 1998)

    Google Scholar 

  33. D.M. Eigler, E.K. Schweitzer, Positioning single atoms with a scanning tunneling microscope. Nature 344, 524 (1990)

    Article  ADS  Google Scholar 

  34. A. Kühnle, G. Meyer, S.W. Hla, K.-H. Rieder, Understanding atom movement during lateral manipulation with the STM tip using a simple simulation method. Surf. Sci. 499, 15 (2002)

    Article  ADS  Google Scholar 

  35. S.H. Cohen, Atomic Force Microscopy/Scanning Tunneling Microscopy (Plenum Press, New York, 1995)

    Google Scholar 

  36. D.Y. Lee, High Speed and Higly Accurate Tip-scanning Atomic Force Microscope (VDM Verlag, Germany, 2008)

    Google Scholar 

  37. S. Morita, Non-Contact Atomic Force Microscopy (Springer, Berlin, 2002)

    Book  Google Scholar 

  38. P.E. West, Introduction to Atomic Force Microscopy: Theory, Practice and Applications. http://www.afmuniversity.org/Cover.html

  39. https://en.wikipedia.org/wiki/Atomic-force_microscopy

  40. https://www.bing.com/images/search?q=Atomic+Force+Microscope

  41. P. Eaton, P. West, Atomic Force Micrcoscopy (Oxford University Press, Oxford, 2010)

    Book  Google Scholar 

  42. R.G. Reifenberger, Fundamentals of Atomic Force Microscoy (World Scientific Publishing, Singapore, 2015)

    Book  Google Scholar 

  43. E.J. Giessibl, Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949 (2003)

    Article  ADS  Google Scholar 

  44. W. Wien, Kanalstrahlen, Handbuch der Experimentalphysik, vol. 14 (Springer, Berlin, 1927)

    MATH  Google Scholar 

  45. A.M. Robert, Nobel Lecture (Elsevier Publishing Company, Amsterdam, 1965)

    Google Scholar 

  46. V.W. Hughes, L. Schulz (eds.), Sources of Atomic Particles. Methods of Experimental Physics, vol. 4; Atomic and Electron Physics (Academic, San Diego, 1988)

    Google Scholar 

  47. J.P. Guzowsky, G.M. Hieftje, Gas sampling glow discharge: a versatile ionization source for gas chromatography time of flight mass spectrrometry. Anal. Chem. 72, 3812 (2000)

    Article  Google Scholar 

  48. I.G. Brown, The Physics and Technology of Ion Sources, 2nd edn. (Wiley, New York, 2004)

    Book  Google Scholar 

  49. https://en.wikipedia.org/wiki/Ion_source

  50. R.A. Lyttleton, H. Bondi, On the physical consequence of a general excess of charge. Proc. Roy. Soc. A252, 313 (1959)

    ADS  MathSciNet  Google Scholar 

  51. G. Gallinaro, M. Marinelli, G. Morpurgo, Electric neutrality of matter. Phys. Rev. Lett. 38, 1255 (1977)

    Article  ADS  Google Scholar 

  52. M. Szilagyi, Electron and Ion Optics (Plenum Publishing Corporation, New York, 1988)

    Book  Google Scholar 

  53. H. Liebl, Applied Charged Particle Optics (Springer, Berlin, 2007)

    Google Scholar 

  54. P.W. Hawkes, E. Kasper (eds.), Principles of Electron Optics (Academic, New York, 1996)

    Google Scholar 

  55. R.F. Egerton, Energy Loss Spectroscopy in the Electron Microscope (Plenum Press, New York, 1996)

    Book  Google Scholar 

  56. F. Zhang, Z. Zhang (eds.), Progress in Transmission Electron Microscopy, vol. 38, 39, Springer series in surface science (Springer, Berlin, 2001)

    Google Scholar 

  57. L. Reimer, H. Kohl, Transmission Electron Mircroscopy: Physics of Image Formation (Springer, Berlin, 2008)

    Google Scholar 

  58. E. De Hoffmann, V. Strobant, Mass Spectrometry: Principles and Applications, 3rd edn. (Wiley, New York, 2007)

    Google Scholar 

  59. JTh Watson, O.D. Sparkman, Introduction to Mass Spectrometry: Instrumentation, Applications and Strategies for Data Interpretation, 4th edn. (Wiley, New York, 2007)

    Book  Google Scholar 

  60. H.-J. Hübschmann, Handbook of GC/MS, Fundamentals and Applications, 3rd edn. (Wiley-VCH Verlagsgesellschaft, Weinheim, 2015)

    Google Scholar 

  61. H.-J. Hübschmann, Mass Spectrometry Milestones. In: Nature Methods. (2015), Band 12, Supplement (PDF)

    Google Scholar 

  62. https://en.wikipedia.org/wiki/Mass_spectrometry

  63. D. Zwillinger, Handbook of Differential Equations. 3rd edn, p. 125. (Academic Press, Boston, MA 1997)

    Google Scholar 

  64. J.H. Gross, Mass Spectrometry: A Textbook, 3rd edn. (Springer, Berlin, 2011)

    Book  Google Scholar 

  65. J.R. de Laeter, Application of Inorganic Mass Spectrometry (Wiley Interscience, New York, 2001)

    Google Scholar 

  66. J. Mattauch, Massenspektrographie und ihre Anwendungen und Probleme der Atom- und Kernchemie. Ergebnisse der exakten Naturwiss. 19, 170 (1940)

    Google Scholar 

  67. W.C. Wiley, I.H. McLaren, Time-of-flight mass spectrometer with improved resolution. Rev. Scient. Instrum. 26, 1150 (1955)

    Article  ADS  Google Scholar 

  68. E.W. Schlag (ed.), Time of Flight Mass Spectrometry and its Applications (Elsevier, Amsterdam, 1994)

    Google Scholar 

  69. D.M. Lubmann, Lasers and Mass Spectrometry (Oxford University Press, Oxford, 1990)

    Google Scholar 

  70. R.N. Zare, Development of a Miniaturized Hadamard Transform Time-of-Flight Mass Spectrometer (2007)

    Google Scholar 

  71. M.M. Kappes, Experimental studies of gas-phase main group clusters. Chem. Rev. 88, 369 (1988)

    Article  Google Scholar 

  72. W. Paul, Elektromagnetische Käfige für geladene und neutrale Teilchen, Phys. Blätter 46, 227 (1990); W. Paul, Angew. Chemie Int. Ed. Engl. 29, 739 (1990)

    Article  Google Scholar 

  73. http://www.abrf.org/ABRFNews/1996/sep96iontrap.html

  74. L.S. Brown, G. Gabrielse, Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  75. G. Bollen, R.B. Moore, G. Savard, H. Stoltzenberg, The accuracy of heavy ion mass measurement using time of flight ion cyclotron resonance in a Penning trap. J. Appl. Phys. 68, 4355 (1990)

    Article  ADS  Google Scholar 

  76. J. Chadwick (ed.), Collected Papers of Lord Rutherford (Vieweg, Braunschweig, 1963)

    Google Scholar 

  77. E. Rutherford, J. Chadwick, Ellis, Radiation from Radioactive Substances (Cambridge, 1930), p. 197

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Demtröder .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Demtröder, W. (2018). The Concept of the Atom. In: Atoms, Molecules and Photons. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55523-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55523-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55521-7

  • Online ISBN: 978-3-662-55523-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics