Skip to main content

Modern Developments in Atomic and Molecular Physics

  • Chapter
  • First Online:
Atoms, Molecules and Photons

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

Over the last few years, several very interesting new developments in atomic and molecular physics were initiated that have considerably widened our understanding of the interaction of light with matter and opened new possibilities for many applications. In this chapter we will briefly discuss some of the experiments that have pushed forward these developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.W. Hänsch, A.L. Schawlow, Cooling of gases by laser radiation. Opt. Commun. 13, 68 (1975)

    Article  ADS  Google Scholar 

  2. D. Sesko, C.G. Fam, C.E. Wieman, Production of a cold atomic vapor using diode-laser cooling. J. Opt. Soc. Am. B 5, 1225 (1988)

    Article  ADS  Google Scholar 

  3. J. Dalibard, C. Cohen-Tannoudji, Laser cooling below the Doppler-limit by polarization gradients: simple theoretical model. J. Opt. Soc. Am. B 6, 2023 (1989)

    Article  ADS  Google Scholar 

  4. A. Arimondo, W.D. Phillips, F. Strumia (eds.), Laser Manipulation of Atoms and Ions (North Holland Publishing Company, Amsterdam, 1992)

    Google Scholar 

  5. H. Katori et al., Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature. Phys. Rev. Lett. 82(6), 1116 (1999)

    Article  ADS  Google Scholar 

  6. H.I. Metcalf, P. van der Straaten, Laser Cooling and Trapping (Springer, Berlin, 1999)

    Book  Google Scholar 

  7. K. Sengstock, W. Ertmer, Laser manipulation of atoms. Adv. At. Mol. Opt. Phys. 35, 1 (1995)

    Article  ADS  Google Scholar 

  8. S.N. Bose, Planck’s Gesetz und Lichtquanten-hypothese, Z. Physik 26, 178 (1924); A. Einstein, Sitz. Berichte Preuss. Akademie Berlin 22, 261 (1924)

    Google Scholar 

  9. M.H. Andersen, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic gas. Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  10. K.B. Davis, M.O. Mewes, M.A. Joffe, M.R. Andrews, W. Ketterle, Evaporative cooling of sodium atoms. Phys. Rev. Lett. 74, 5202 (1995)

    Article  ADS  Google Scholar 

  11. W. Ketterle, N.J. van Druten, Evaporative cooling of trapped atoms. Adv. At. Mol. Opt. Phys. 37, 181 (1996)

    Article  ADS  Google Scholar 

  12. Ch. Becker, Multicomponent Bose Einstein Condensates Dr. Hut Verlag München (2009)

    Google Scholar 

  13. M. Ueda, Fundamentals and New Frontiers of Bose-Einstein Condensation (World Scientific Publishing 2010)

    Google Scholar 

  14. S. Jochim, M. Bartenstein, R. Grimm, Bose–Einstein Condensation of Molecules, Science Express 13. November 2003/Science 1093280; and: Physics Today, October 2003

    Google Scholar 

  15. A. Griffin, D.W. Snoke, S. Stringari (eds.), Bose-Einstein Condensation (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  16. S. Martelucci (ed.), Bose-Einstein Condensates and Atom Laser (Kluwer Academic Publishers, New York, 2000)

    Google Scholar 

  17. P. Bermann (ed.), Atom Interferometry (Academic Press, San Diego 1997); A. Widera, Th.W. Hänsch et al., Measurements of atomic scattering properties. Phys. Rev. Lett. 92, 160406-1 (2004)

    Google Scholar 

  18. M. A. Kasevich; et al., “Atomic fountains and clocks". Optics (1989)

    Google Scholar 

  19. A. Aspect et al., Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping. Phys. Rev. Lett. 61(7), 826 (1988)

    Article  ADS  Google Scholar 

  20. W.C. Stwalley, K.-H. Uang, Pure Long Range molecules. Phys. Rev. Lett. 41, 1164 (1978)

    Article  ADS  Google Scholar 

  21. C. Chin, Observation of Feshbach-like resonances in collisions between ultracold molecules. Phys. Rev. Lett. 94, 123201 (2005)

    Article  ADS  Google Scholar 

  22. M. Mark, T. Kraemer, J. Harbig, C. Chin, H.C. Nägerl, R. Grimm, Efficient creation of molecules from a cesium Bose-Einstein condensate. Europhys. Lett. 69, 706 (2005)

    Article  ADS  Google Scholar 

  23. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Quantum Physe transitions from a Supere fluid to a Mott insulator in a gas of ultra cold atoms: nature 415(6867), 39–44 (2002)

    Google Scholar 

  24. I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultra cold gases. Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  25. I. Bloch, Ultracold atoms in optical lattices. Nature Phys. 1,2,3 mn(beam)

    Google Scholar 

  26. T. Baumert, M. Grosser, R. Thalweiler, G. Gerber, Femtosecond time-resolved molecular photoionisation: The \({\rm {Na}}_{2}\)-System. Phys. Rev. Lett. 67, 3753 (1991)

    Article  ADS  Google Scholar 

  27. E. Schreiber, Femtosecond Real Time Spectroscopy of Small Molecules and Clusters (Springer, Berlin, 1998)

    Google Scholar 

  28. A.H. Zewail, Femtochemistry (World Scientific, Singapore, 1994)

    Google Scholar 

  29. M. Shapiro, P. Brummer, Coherent control of atomic, molecular and electronic processes. Adv. At. Mol. Opt. Phys. 42, 287 (2000)

    Article  ADS  Google Scholar 

  30. A. Assion, G. Gerber, Control of chemical reactions by feedback-optimized phase shaped femtosecond laser pulses. Science 282, 119 (1998)

    Article  Google Scholar 

  31. T. Brixner, N.H. Damrauer, G. Gerber, Femtosecond quantum control. Adv. At. Mol. Opt. Phys. 46, 1–56 (2001)

    Article  ADS  Google Scholar 

  32. A. Rice, M. Zhao, Optical Control of Molecular Dynamics (Wiley, New York, 2000)

    Google Scholar 

  33. D. Zeidler, S. Frey, K.L. Kompa, M. Motzkus, Evolutionary algorithm and their applications to optimal control studies. Phys. Rev. A 64, 023420 (2001)

    Article  ADS  Google Scholar 

  34. J. Reichert, T.W. Hänsch, Phase coherent vacuum ultraviolet to radiofrequency comparison with a mode-locked laser. Phys. Rev. Lett. 84, 3232 (2000); S.A. Didamus, T.W. Hänsch, Direct link between microwave and optical frequencies with a 300 THz femtosecond pulse. Phys. Rev. Lett. 84, 5102 (2000); Th. Udem, R. Holzwarth, T.W. Hänsch, Optical frequency metrology. Nature 416, 233 (2002)

    Article  Google Scholar 

  35. N. Kolchevsky, M. Fischer, S.G. Karshenboim, T.W. Hänsch, High precision optical measurement of the 2S Hyperfine-interval in atomic hydrogen. Phys. Rev. Lett. 92, 033003 (2004)

    Article  ADS  Google Scholar 

  36. S.G. Karshenboim, et al. (eds.), The Hydrogen Atom (Precision Physics of Simple Atomic Systems (Springer, Berlin, 2001)

    Google Scholar 

  37. S.A. Didamus et al., An optical clock based on a single trapped \(^{199}{\rm {Hg}}^{+}\)-Ion. Science 293, 825 (2001)

    Article  ADS  Google Scholar 

  38. T. Sauter, R. Blatt, W. Neuhauser, P.E. Toschek, Quantum jumps in a single ion. Phys. Scr. 22, 128 (1988)

    Article  Google Scholar 

  39. R. Blümel, W. Walther, Phase transitions of stored laser-cooled ions. Nature 334, 309 (1988)

    Article  ADS  Google Scholar 

  40. J. Javamainen, Laser cooling of trapped ion-clusters. J. Opt. Soc. Am. B 5, 73 (1988)

    Article  ADS  Google Scholar 

  41. R. Th Udem, Holzwarth, Th Hänsch, Femtosecond Optical Frequency Combs. Eur. Phys. J. Special Topics 172, 69 (2009)

    Article  ADS  Google Scholar 

  42. Th Udem, Frequency Comb Benefits Nature Photonics 3, 82 (2009)

    Article  ADS  Google Scholar 

  43. Th. Udem, M. Zimmermann, R. Holzwarth, M. Fischer, N. Kolachevsky, Th. Hansch, Optical Frequency Measurement: Femto second Optical Frequency Comb: Principle, Operation and Applications, ed. by J. Ye, S. T. Cundiff (Springer, Berlin, 2005), p. 176

    Google Scholar 

  44. H.A. Bachor, A Guide to Experiments in Quantum Optics, 2nd edn. (Wiley VCH, Weinheim, 2004); H. Paul, Introduction to Quantum Optics. From Light Quanta to Quantum Teleportation (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  45. P.R. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors, 2nd edn. (World Scientific, Singapore, 2017)

    Book  Google Scholar 

  46. Abbott, Benjamin P et al., (LIGO Scientific Collaboration and Virgo Collaboration) (2016). “Properties of the binary black hole merger GW150914". Physical Review Letters. 116 (24): 241102. arXiv:1602.03840

  47. C. Affeldt, K. Danzmann, K.L. Dooley, H. Grote, M. Hewitson, S. Hild, J. Hough, J. Leong, H. Lück, M. Prijatelj, Advanced techniques in GEO 600. Class. Quantum Grav. 31, 224002 (2014)

    Article  ADS  Google Scholar 

  48. F. Seifert, P. Kwee, M. Heurs, B. Wilke, K. Danzmann, Laser Power Stabilization for second generation gravitational wave detectors. Opt. Lett. 31, 2000 (2006)

    Article  ADS  Google Scholar 

  49. https://en.wikipedia.org/wiki/LIGO; https://en.wikipedia.org/wiki/Virgo_interferometer

  50. G. Augner, E. Plagnol, Introduction to the Detection of Gravitational Waves with Ground- and Space-Based Detectors (World Scientific Publishing, 2017)

    Google Scholar 

  51. D.G. Blair, E.J. Howell, Advanced Gravitational Wave Detectors (Cambridge University Press 2012)

    Google Scholar 

  52. B. Bhawal, Physics of interferometric gravitational wave detectors. Pramana J. Phys. 63, 645 (1994)

    Article  ADS  Google Scholar 

  53. LISA: www. International Technology Education Association: The Technology Teacher (2004)

    Google Scholar 

  54. St. Dürr, G. Rempe, Wave-particle duality in an atom interferometer. Adv. At. Mol. Opt. Phys. 41 (1999)

    Google Scholar 

  55. J.S. Bell, A. Aspect, Speakable and Unspeakable in Quantum Mechanics, Collected Papers on Quantum Philosophy (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  56. J.S. Bell, On the Einstein-Rosen-Podolsky-Paradox. Physics 1, 195 (1964); A. Afriat, The Einstein-Podolsky-Rosen-Paradox (Plenum Press, New York, 1998)

    Google Scholar 

  57. A. Aspect, P. Grangier, G. Roger, Experimental Tests of Bell’s inequality using timer-varying analyzers. Phys. Rev. Lett. 49, 1804 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  58. A. Afriat, F. Sellen, The Einstein-Rosen-Podolsky Paradox in Atomic, Nuclear and Particle Physics (Plenum Press, New York, 1999)

    Book  Google Scholar 

  59. S. Haroche, M. Brune, J.M. Raimond, Schrödinger cats and entanglement experiments in cavity QED, in Laser Spectroscopy XIII, ed. by Zhi-jiang Wang (Singapore, Zhi-ming Zhang and Yu-zhu Wang (World Scientific, 1998)

    Google Scholar 

  60. D. Bouwmeester, A. Ekert, A. Zeilinger (eds.), The Physics of Quantum Information, 3rd Printing (Springer, Berlin, 2001)

    Google Scholar 

  61. C.P. Williams, S.H. Clearwater, Explanations in Quantum Computing (Springer, Berlin, 1997)

    MATH  Google Scholar 

  62. J. Preskill, Lecture Notes on Quantum Computing, home page Ph219/CS219; D (A (Quantum Computation. Phys. World, Deutsch, Ekert, March 1998)

    Google Scholar 

  63. J.I. Cirac, P. Zoller, J.F. Poyatos, Quantum gates and quantum computation with trapped ions, in The Physics of Quantum Information, ed. by D. Bouwmeester, A. Ekert, A. Zeilinger (Springer, Berlin, 2001)

    Google Scholar 

  64. T. Monz, K. Kim, W. Hänsel, M. Riebe, A.S. Villar, P. Schindler, M. Chwalla, M. Hennrich, R. Blatt, Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102, 040501 (2009). arXiv:0804.0082

    Article  ADS  Google Scholar 

  65. M. Mohan, M. ed. New Trends in Atomic and Molecular Physics. Springer Series on Atomic, Optical and Plasma Physics, vol. 76 (Springer, 2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Demtröder .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Demtröder, W. (2018). Modern Developments in Atomic and Molecular Physics. In: Atoms, Molecules and Photons. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55523-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55523-1_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55521-7

  • Online ISBN: 978-3-662-55523-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics