Generating Natural Language Texts

  • Hermann Bense
  • Ulrich Schade
  • Michael Dembach


This chapter is about natural language texts generated automatically. We will discuss the motivation as to why these texts are needed and discuss which domains will profit from such texts. During recent years NLG technology has matured. Millions of news articles are generated daily. However, there is potential for higher quality and more elaborated styles. For this purpose, new techniques have to be developed. These techniques need to be semantically driven. As examples, we will discuss (a) the use and the retrieval of background information by following paths in knowledge graphs, (b) how to calculate and exploit information structure, and (c) how to hyper-personalise automatically generated news.


  1. 1.
    Bense H (2014) The unique predication of knowledge elements and their visualization and factorization in ontology engineering. In: Garbacz P, Kutz O (eds) Formal ontology in information systems, proceedings of the eighth international conference (FOIS 2014), Rio de Janeiro, Brazil, Sept. 22–25, 2014. IOS Press, Amsterdam, pp 241–250Google Scholar
  2. 2.
    Bense H, Schade U (2015) Ontologien als Schlüsseltechnologie für die automatische Erzeugung natürlichsprachlicher Texte. In: Humm B, Reibold A, Ege B (eds) Corporate Semantic Web. Springer, BerlinGoogle Scholar
  3. 3.
    Bock JK (1982) Toward a cognitive psychology of syntax: information processing contributions to sentence formulation. Psychol Rev 89:1–47CrossRefGoogle Scholar
  4. 4.
    Bühler K (1934) Sprachtheorie: Die Darstellungsfunktion der Sprache. G. Fischer Verlag, JenaGoogle Scholar
  5. 5.
    Dell GS (1986) A spreading-activation theory of retrieval in sentence production. Psychol Rev 93:283–321CrossRefGoogle Scholar
  6. 6.
    Fromkin V (1971) The non-anomalous nature of anomalous utterances. Language 47:27–52CrossRefGoogle Scholar
  7. 7.
    Garrett M (1975) The analysis of sentence production. In: Bower G (ed) Psychology of learning and motivation, vol 9. Academic, New York, pp 133–177Google Scholar
  8. 8.
    Kempen G, Hoenkamp E (1987) An incremental procedural grammar for sentence formulation. Cogn Sci 11:201–258CrossRefGoogle Scholar
  9. 9.
    Kempen G, Huijbers P (1983) The lexicalization process in sentence production and naming: indirect election of words. Cognition 14:185–209CrossRefGoogle Scholar
  10. 10.
    Levelt WJ (1983) Monitoring and self-repair in speech. Cognition 14:41–104CrossRefGoogle Scholar
  11. 11.
    Levelt WJ (1989) Speaking – from intention to articulation. MIT Press, Cambridge, MAGoogle Scholar
  12. 12.
    Levelt WJ, Roelofs A, Meyer AS (1999) A theory of lexical access in speech production. Behav Brain Sci 22:1–75Google Scholar
  13. 13.
    Musan R (2010) Informationsstruktur. Universitätsverlag Winter, HeidelbergGoogle Scholar
  14. 14.
    Nübling D, Fahlbusch F, Heuser R (2015) Namen: Eine Einführung in die Onomastik (2 Ausg.). Narr, TübingenGoogle Scholar
  15. 15.
    Schriefers H, Meyer AS, Levelt WJ (1990) Exploring the time course of lexical access in language production: picture-word interference studies. J Mem Lang 29:86–102CrossRefGoogle Scholar
  16. 16.
    Wöllstein A (2014) Topologisches Satzmodell (2. Ausg.). Universitätsverlag Winter, HeidelbergGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.TextOmatic AGDortmundGermany
  2. 2.Fraunhofer-Institut FKIEWachtbergGermany

Personalised recommendations