Context-Aware Documentation in the Smart Factory

  • Ulrich Beez
  • Lukas Kaupp
  • Tilman Deuschel
  • Bernhard G. Humm
  • Fabienne Schumann
  • Jürgen Bock
  • Jens Hülsmann


In every factory environment, errors and maintenance situations may occur. They must be handled quickly and accurately. This article describes a semantic application for automatically retrieving technical documentation for fixing such errors and presenting them to factory personnel. For this, machine raw data is collected and semantically enriched using Complex Event Processing (CEP). Semantic events are mapped to technical documentation via an ontology. Particular focus is drawn on the user experience of the semantic application.


  1. 1.
    Beez U, Bock J, Deuschel T, Humm BG, Kaupp L, Schumann F (2017) Context-aware documentation in the smart factory. In: Proceedings of the collaborative European research conference (CERC 2017), KarlsruheGoogle Scholar
  2. 2.
    Beyerer J, León FP, Frese C (2016) Automatische Sichtprüfung: Grundlagen, Methoden und Praxis der Bildgewinnung und Bildauswertung. Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    Busse J, Humm B, Lubbert C, Moelter F, Reibold A, Rewald M, Schluter V, Seiler B, Tegtmeier E, Zeh T (2015) Actually, what does “ontology” mean?: a term coined by philosophy in the light of different scientific disciplines. J Comput Inf Technol 23(1):29. CrossRefGoogle Scholar
  4. 4.
    eCl@ss (2017) Introduction to the eCl@ss standard [online]. Available at: Accessed 21 Sept 2017
  5. 5.
    EPC (2006) Directive 2006/42/EC of the European Parliament and of the Council of 17 May 2006 on machinery, amending Directive 95/16/EC (recast). Off J Eur Union [online]. Available at: Accessed 21 Sept 2017
  6. 6.
    Garrett JJ (2011) The elements of user experience: user-centered design for the web and beyond, 2nd edn. New Riders, BerkeleyGoogle Scholar
  7. 7.
    Hornung R, Urbanek H, Klodmann J, Osendorfer C, van der Smagt P (2014) Model-free robot anomaly detection. In: 2014 IEEE/RSJ International conference on intelligent robots and systems, pp 3676–3683.
  8. 8.
    IEEE (2015) 1872-2015 IEEE Standard ontologies for robotics and automation. IEEE Robot Autom Society [Online]. Availabe at Accessed 25 Sept 2017
  9. 9.
    IEEE, Adam Pease (2017) Suggested upper merged ontology (SUMO) [Online]. Available at Accessed 25 Sept 2017
  10. 10.
    ISO (2006) DIN ISO 9241-110:2006: ‘DIN EN ISO 9241-110 Ergonomie der Mensch-System-Interaktion – Teil 110: Grundsätze der Dialoggestaltung (ISO 9241-110:2006)’. Deutsche Fassung EN ISO 9241-110:2006: Perinorm [Online]. Available at Accessed 28 June 2013
  11. 11.
    ISO (2010) DIN ISO 9241-210:2010: ‘Ergonomie der Mensch-System-Interaktion – Teil 210: Prozess zur Gestaltung gebrauchstauglicher interaktiver Systeme’ [Online]. Available at Accessed 29 Oct 2014
  12. 12.
    ISRA VISION AG (2015) The NEW Standard In Float Glass Inspection FLOATSCAN-5D Product Line, ISRA VISION AG [online]. Available at: Accessed 13 June 2017
  13. 13.
    Kaupp L, Beez U, Humm BG, Hülsmann J (2017) From raw data to smart documentation: introducing a semantic fusion process. In: Proceedings of the collaborative European research conference (CERC 2017), KarlsruheGoogle Scholar
  14. 14.
    Koffka K (2014) Principles of gestalt psychology. Mimesis Edizioni, MilanGoogle Scholar
  15. 15.
    Nuñez DL, Borsato M (2017) An Ontology-based model for prognostics and health management of machines. J Ind Inform Integr [online]. Available at: Accessed 21 Sept 2017CrossRefGoogle Scholar
  16. 16.
    Starke G (2015) Effektive Software-Architekturen: Ein praktischer Leitfaden, 7th edn. Hanser, München. CrossRefzbMATHGoogle Scholar
  17. 17.
    W3C (2014) RDF: ‘1.1 Concepts and Abstract Syntax’ [Online]. Available at Accessed 16 June 2017

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ulrich Beez
    • 1
  • Lukas Kaupp
    • 1
  • Tilman Deuschel
    • 1
  • Bernhard G. Humm
    • 1
  • Fabienne Schumann
    • 2
  • Jürgen Bock
    • 3
  • Jens Hülsmann
    • 4
  1. 1.Hochschule DarmstadtDarmstadtGermany
  2. 2.dictaJet Ingenieurgesellschaft mbHWiesbadenGermany
  3. 3.KUKA Roboter GmbHAugsburgGermany
  4. 4.ISRA Surface Vision GmbHHertenGermany

Personalised recommendations