Skip to main content

Part of the book series: Encyclopaedia of Mathematical Sciences ((EMS,volume 136.3))

  • 876 Accesses

Abstract

We have seen that the invariant ring of a \(\mathbb{G}_{a}\)-action on an affine variety need not be finitely generated as a k-algebra. But in many cases, most notably in the linear case, the invariant ring is known to be finitely generated, and in these cases it is desirable to have effective means of calculating invariants. In this chapter, we consider constructive invariant theory for \(\mathbb{G}_{a}\)-actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Alhajjar, Locally nilpotent derivations of integral domains, Ph.D. thesis, Universite de Bourgogne, 2015.

    Google Scholar 

  2. L.P. Bedratyuk, Kernels of derivations of polynomial rings and Casimir elements, Ukrainian Math. J. 62 (2010), 495–517.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Cerezo, Sur les invariants algebriqués du groupe engendré par une matrice nilpotente, 1986, avail. at math.unice.fr/ ∼ frou.

    Google Scholar 

  4. L.P. Bedratyuk, Calcul des invariants algébriques et rationnels d’une matrice nilpotente, Tech. Report 35, Université de Poitiers Prepub. Math., France, 1988.

    Google Scholar 

  5. P. C. Craighero, A note on triangular derivations ofk[X 1, X 2, X 3, X 4], Proc. Amer. Math. Soc. 129 (2001), 657–662.

    Article  MathSciNet  Google Scholar 

  6. V. Drensky and G. K. Genov, Multiplicities of Schur functions with applications to invariant theory and PI-algebras, C. R. Acad. Bulgare Sci. 57 (2004), 5–10.

    MathSciNet  MATH  Google Scholar 

  7. D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, 1995.

    Google Scholar 

  8. E. B. Elliott, An algorithm to compute the invariant ring of a \(\mathbb{G}_{a}\) -action on an affine variety, J. Symbolic Comp. 16 (1993), 551–555.

    Article  MathSciNet  Google Scholar 

  9. E. B. Elliott, Polynomial Automorphisms and the Jacobian Conjecture, Birkhauser, Boston, 2000.

    Google Scholar 

  10. A. Fauntleroy, Linear \(\mathbb{G}_{a}\) -actions on affine spaces and associated rings of invariants, J. Pure Appl. Algebra 9 (1977), 195–206.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Freudenburg, Canonical factorization of the quotient morphism for an affine \(\mathbb{G}_{a}\) -variety, arXiv:1602.08786v2.

    Google Scholar 

  12. G.-M. Greuel and, Algebraic Homogeneous Spaces and Invariant Theory, Lect. Notes in Math., vol. 1673, Springer Verlag, 1997.

    Google Scholar 

  13. D. Holtackers, On kernels of homogeneous derivations, Master’s thesis, Univ. Nijmegen, The Netherlands, 2003.

    Google Scholar 

  14. R. Lercier and M. Olive, Covariant algebra of the binary monic and the binary decimal, arXiv:1509.08749v1.

    Google Scholar 

  15. E. G. Koshevoi, An algorithm to compute the kernel of a derivation up to a certain degree, Ann. Polon. Math. 76 (2001), 147–158.

    Article  MathSciNet  Google Scholar 

  16. E. G. Koshevoi, Polynomial endomorphisms and kernels of derivations, Ph.D. thesis, Univ. Nijmegen, The Netherlands, 2003.

    Google Scholar 

  17. A. Nowicki, Polynomial Derivations and their Rings of Constants, Uniwersytet Mikolaja Kopernika, Toruń, 1994.

    MATH  Google Scholar 

  18. M. Olive, About Gordan’s algorithm for binary forms, arXiv:1403.2283v5.

    Google Scholar 

  19. N. Onoda, Linear \(\mathbb{G}_{a}\) -actions on polynomial rings, Proceedings of the 25th Symposium on Ring Theory (Okayama, Japan) (Y. Tsushima and Y. Watanabe, eds.), 1992, pp. 11–16.

    Google Scholar 

  20. C. Procesi, Lie Groups: An Approach through Invariants and Representations, Springer Verlag, New York, 2007.

    MATH  Google Scholar 

  21. C. S. de Salas, Invariant theory for unipotent groups and an algorithm for computing invariants, Proc. London Math. Soc. 81 (1999), 387–404.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Salmon, Lessons Introductory to the Modern Higher Algebra, Chelsea Publishing Co., Bronx, New York, 1885.

    Google Scholar 

  23. L. Tan, An algorithm for explicit generators of the invariants of the basic \(\mathbb{G}_{a}\) -actions, Comm. Algebra 17 (1989), 565–572.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Winkelmann, On free holomorphic \(\mathbb{C}\) -actions on \(\mathbb{C}^{n}\) and homogeneous Stein manifolds, Math. Ann. 286 (1990), 593–612.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Freudenburg, G. (2017). Algorithms. In: Algebraic Theory of Locally Nilpotent Derivations. Encyclopaedia of Mathematical Sciences, vol 136.3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55350-3_8

Download citation

Publish with us

Policies and ethics