Skip to main content

Properties of the Sound of Flue Organ Pipes

  • Chapter
Springer Handbook of Systematic Musicology

Part of the book series: Springer Handbooks ((SHB))

  • 5259 Accesses

Abstract

This chapter is an overview of the characteristic sound properties of flue organ pipes. The characteristic properties of the stationary spectrum and attack transient have been surveyed and assigned to properties of the physical systems (air column as acoustic resonator, air jet as hydrodynamic oscillator, and pipe wall as mechanical resonator) involved in the sound generation process. The measurements presented underline the primary role of the acoustic resonator in the stationary sound and of the edge tone in the attack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FT:

Fourier transform

FWHM:

full width at half maximum

References

  1. A.W. Nolle: Sinuous instability of a planar air jet: Propagation parameters and acoustic excitation, J. Acoust. Soc. Am. 103, 3690–3705 (1998)

    Article  Google Scholar 

  2. S.A. Elder: The mechanism of sound production in organ pipes and cavity resonators, J. Acoust. Soc. Jpn. (E) 13, 11–23 (1992)

    Article  Google Scholar 

  3. J.W. Coltmann: Jet drive mechanisms in edge tones and organ pipes, J. Acoust. Soc. Am. 60, 724–733 (1976)

    Article  Google Scholar 

  4. N.H. Fletcher: Sound production by organ flue pipes, J. Acoust. Soc. Am. 60, 926–936 (1976)

    Article  Google Scholar 

  5. S. Yoshikawa, J. Saneyoshi: Feedback excitation mechanism in organ pipes, J. Acoust. Soc. Jpn. (E) 1, 175–191 (1980)

    Article  Google Scholar 

  6. M.P. Verge, B. Fabre, W.E. Mahu, A. Hirschberg: Feedback excitation mechanism in organ pipes, J. Acoust. Soc. Am. 95, 1119–1132 (1994)

    Article  Google Scholar 

  7. C. Mahrenholz: Berechnung der Mensuren (Orgelbau-Fachverlag Rensch, Lauffen/Neckar 1987) pp. 35–125

    Google Scholar 

  8. W. Ellerhorst: Handbuch der Orgelkunde (Benzinger, Einsiedeln 1936) pp. 17–19

    Google Scholar 

  9. M.A. Cavaillé-Coll: Sämtliche theoretischen Arbeiten (Jochum, Dornbirn 1982) pp. 126–137

    Google Scholar 

  10. N.H. Fletcher, T.D. Rossing: The Physics of Musical Instruments (Springer, New York 1991)

    Book  Google Scholar 

  11. J. Angster, A. Miklós: Documentation of the sound of a historical pipe organ, Appl. Acoust. 46, 61–82 (1995)

    Article  Google Scholar 

  12. G.A. Korn, T.M. Korn: Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York 1975)

    MATH  Google Scholar 

  13. J. Angster, A. Miklós: Intensive courses of organ and church acoustics. Organised at the Fraunhofer Institute of Building Physics in Stuttgart, Germany, https://www.ibp.fraunhofer.de/en/Expertise/Acoustics/Musical-Acoustics.html

  14. B. Fabre, A. Hirschberg, A.P.J. Wijnands: Vortex shedding in steady oscillation of a flue organ pipe, Acust.-Acta Acust. 82, 863–877 (1996)

    Google Scholar 

  15. S. Pitsch, J. Angster, M. Strunz, A. Miklós: Spectral properties of the edge tone of a flue organ pipe, ISMA ’97, Edinburgh 1997) pp. 339–344

    Google Scholar 

  16. J. Angster, G. Paál, W. Garen, A. Miklós: Effect of voicing steps on the stationary spectrum and attack transient of a flue organ pipe. In: ISMA ’97, Edinburgh (1997) pp. 285–294

    Google Scholar 

  17. P.M. Morse, K.U. Ingard: Theoretical Acoustics (McGraw-Hill, New York 1968)

    Google Scholar 

  18. J. Angster, A. Miklós: Sound radiation of open labial organ pipes; the effect of the size of the openings on the formant structure. In: Int. Symp. on Music. Acoust. (ISMA ’98, Leavenworth), Acoust. Soc. Amer and Catgut Ac. Soc., Leavenworth (1998) pp. 267–272

    Google Scholar 

  19. J. Kümmel: Raumakustische Probleme bei der Aufstellung von Orgelpfeifen, Diplomarbeit (Universität Stuttgart, Stuttgart 1994)

    Google Scholar 

  20. A.W. Nolle: Theoretical Acoustics. Flue organ pipes: Adjustments affecting steady waveform, J. Acoust. Soc. Am. 73, 1821–1832 (1983)

    Article  Google Scholar 

  21. G. Paál, J. Angster, W. Garen, A. Miklós: Sound and flow in the mouth of flue organ pipes. Part I: Fully developed state. In: ISMA ’97, Edinburgh (1997) pp. 295–301

    Google Scholar 

  22. J. Backus, T.C. Hundley: Wall vibrations in flue organ pipes and their effect on tone, J. Acoust. Soc. Am. 39, 936–945 (1965)

    Article  Google Scholar 

  23. J. Angster, G. Paál, W. Garen, A. Miklós: The effect of wall vibrations on the timbre of organ pipes. In: 16th Int. Congr. Acoust. and 135th Meet. Acoust. Soc. Amer., Seattle, Vol. 2 (1998) pp. 753–754

    Google Scholar 

  24. J. Angster, Z. Dubovski, S. Pitsch, A. Miklós: Impact of the material on the sound of flue organ pipes (acoustic and vibration investigations with modern measuring techniques). In: Analysis and Description of Music Instruments Using Engineering Methods, ed. by C. Birnbaum (Stiftung Händel-Haus, Halle (Saale) 2011) pp. 34–41

    Google Scholar 

  25. J. Angster, I. Bork, A. Miklós, K. Wogram: The investigation of the vibrations of an open cylindrical organ flue pipe. In: 9th FASE Symp. and 1Oth Hung. Conf. Acoust., Balatonfüred (1991)

    Google Scholar 

  26. M.A. Mironov: Parametric instability of a circular shell propagating a Korteweg wave, Acoust. Phys. 41, 707–711 (1995)

    Google Scholar 

  27. M.P. Verge: Aeroacoustics of Confined Jets with Applications to the Physical Modelling of Recorder-Like Instruments, Ph.D. Thesis (University of Eindhoven, Eindhoven 1995)

    Google Scholar 

  28. S. Pitsch: Schneidentonuntersuchungen an einem Orgelpfeifen-Fußmodell mittels Wasserkanal- und akustischen Messungen, Diplomarbeit (Universität Stuttgart, Stuttgart 1996)

    Google Scholar 

  29. M. Castellengo: Acoustical analysis of initial transients in flute like instruments, Acustica 85(3), 387–400 (1999)

    Google Scholar 

  30. A. Powell: On the edgetone, J. Acoust. Soc. Am. 33, 395–409 (1961)

    Article  Google Scholar 

  31. D.G. Crighton: The edgetone feedback cycle; linear theory for the operating stages, J. Fluid. Mech. 234, 361–391 (1992)

    Article  MathSciNet  Google Scholar 

  32. W.K. Blake, A. Powell: The development of a contemporary view of flow tone generation. In: Recent Advances in Aeroacoustics, ed. by A. Krothapalli, C.A. Smith (Springer, New York 1983)

    Google Scholar 

  33. M.S. Howe: The role of displacement thickness fluctuations in hydroacoustics and the jet-drive mechanism of the flue organ pipe, Proc. R. Soc. Lond. A 374, 543–568 (1981)

    Article  Google Scholar 

  34. N. Zagyva: Computer Modelling of the Onset of the Sound of Flue Organ Pipes, MSc Thesis (ELTE University Budapest, Budapest 1993), in Hungarian

    Google Scholar 

  35. J. Angster, J. Angster, A. Miklós: Über die Messungen während des Intonationsprozesses Lippenpfeifen der Orgel, Instrumentenbau–Zeitschrift 45, 71–76 (1991)

    Google Scholar 

  36. J. Angster, S. Pitsch, A. Miklós: Vergleich der subjektiven und objektiven Beurteilungen des Orgelpfeifenklangs. In: Fortschritte der Akustik – DAGA’97, ed. by P. Wille (DEGA, Kiel 1997) pp. 303–304

    Google Scholar 

  37. J. Angster, A. Miklós: End-correction of open flue organ pipes. In: Fortschritte der Akustik DAGA’92, Berlin (1992) pp. 260–263

    Google Scholar 

  38. J. Angster, A. Miklos: Transient sound spectra of a variable length organ pipe. In: Int. Symp. on Music. Acoust., Tokyo (1992) pp. 159–162

    Google Scholar 

  39. V. Rioux, D. Västfjäll, M.Z. Yokota, M. Kleiner: Noise quality of transient sounds: Perception of ‘‘hiss’’ and ‘‘cough’’ in a flue organ pipe, Acust.-Acta Acust. 85, 76 (1999)

    Google Scholar 

  40. A. Miklós, J. Angster: Properties of the Sound of Flue Organ Pipes, Acta Acust. united Acust. 86, 611–622 (2000)

    Google Scholar 

Download references

Acknowledgements

The contents of this chapter have in large parts been published before [8.40]. The research surveyed in this paper was supported by several foundations in Hungary (Soros Foundation, Foundation of the Hungarian Credit Bank and István Széchenyi Foundation) and in Germany (Deutscher Akademischer Ausländerdienst (DAAD), Katholischer Akademischer Ausländerdienst (KAAD)). The research could not have progressed without the generous help of organ builders and experts, including the participants of the short courses. The authors are especially grateful for the friendly support of K. Mühleisen (Organ Builder Company Mühleisen, Leonberg, Germany) and F. Frasch (Technical College for Building of Musical Instruments, Ludwigsburg, Germany)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judit Angster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Angster, J., Miklós, A. (2018). Properties of the Sound of Flue Organ Pipes. In: Bader, R. (eds) Springer Handbook of Systematic Musicology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55004-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55004-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55002-1

  • Online ISBN: 978-3-662-55004-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics