Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

The measurements normally required to understand the physics of musical instruments, including the human voice, usually fall into one of three categories: measuring the airborne sound, measuring the deflection of the surface of an instrument, or measuring the input impedance. This chapter introduces the most common measurement techniques that provide information on these three physical parameters with an emphasis on the first two, which are the measurements most commonly desired by musical acousticians. The chapter begins with a discussion of airborne sound and how it is sensed. Specifically, several types of microphones are introduced followed by a discussion of some of the techniques that rely on sensing by microphones. A review of the techniques for measuring and visualizing deflection shapes is then presented. These techniques range from observing nodal lines using simple Chladni patterns to visualizing deflection shapes using electronic speckle pattern interferometry. The topic of impedance measurement is addressed next, with discussions of both measurements of the input impedance of wind instruments and the measurement of mechanical impedance. This review is not meant to be a complete analysis of each measurement technique. Instead, it is meant to serve as an introduction to the most commonly used techniques and provide references for the interested reader to pursue further study. The advent of new technologies continually changes the equipment that is available to the scientist, but the underlying physical principles remain relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BIAS:

brass instrument analysis system

CCD:

charge-coupled device

DESPI:

decorrelated electronic speckle pattern interferometry

ESPI:

electronic speckle pattern interferometry

FRF:

frequency response function

LDV:

laser Doppler vibrometry

MEMS:

micro-electric mechanical system

NAH:

near-field acoustic holography

References

  1. D.R. Raichel: The Science and Applications of Acoustics (Springer, New York 2000) pp. 168–175

    Google Scholar 

  2. L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders: Fundamentals of Acoustics, 4th edn. (Wiley, New York 2000) pp. 416–428

    Google Scholar 

  3. M.W. Hoffman, C. Pinkelman, X.F. Lu, Z. Li: Real-time and off-line comparisons of standard array configurations containing three and four microphones, J. Acoust. Soc. Am. 107, 3560–3563 (2000)

    Article  Google Scholar 

  4. R. Streicher, W. Dooley: Basic stereo microphone perspectives-a review, J. Audio Eng. Soc. 33, 548–556 (1985)

    Google Scholar 

  5. M. Park, B. Rafaely: Sound-field analysis by plane-wave decomposition using spherical microphone array, J. Acoust. Soc. Am. 118, 3094–3103 (2005)

    Article  Google Scholar 

  6. N. Huleihel, B. Rafaely: Spherical array processing for acoustic analysis using room impulse responses and time-domain smoothing, J. Acoust. Soc. Am. 133, 3395–4007 (2013)

    Article  Google Scholar 

  7. E.G. Williams, J.D. Maynard: Holographic imaging without the wavelength resolution limit, Phys. Rev. Lett. 45, 554–557 (1980)

    Article  Google Scholar 

  8. E.G. Williams: Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography (Academic, London 1999)

    Google Scholar 

  9. J.D. Maynard, E.G. Williams, Y. Lee: Nearfield acoustic holography: I. Theory of generalized hologrphy and the development of NAH, J. Acoust. Soc. Am. 78, 1395–1413 (1985)

    Article  Google Scholar 

  10. S. Dumbacher, D. Brown, J. Blough, R. Bono: Practical aspects of making NAH measurements. In: Proc. Noise and Vibration Conference and Exposition, Warrendale (1999)

    Google Scholar 

  11. F. Muddeen, B. Copeland: Sound radiation from caribbean steelpans using nearfiled acoustical holography, J. Acoust. Soc. Am. 131, 1558–1595 (2012)

    Article  Google Scholar 

  12. L.M. Wang, C.B. Burroughs: Acoustic radiation from bowed violins, J. Acoust. Soc. Am. 110, 543–555 (2001)

    Article  Google Scholar 

  13. J. Benesty, J. Chen, Y. Huang (Eds.): Microphone Array Signal Processing (Springer, Berlin, Heidelberg 2008)

    Google Scholar 

  14. M. Brandstein, D. Ward (Eds.): Microphone Arrays: Signal Processing Techniques and Applications (Springer, New York 2001)

    Google Scholar 

  15. M.B.S. Magalhães, R.A. Tenenbaum: Sound sources reconstruction techniques: A review of their evolution and new trends, Acta Acust. united with Acust. 90, 199–220 (2004)

    Google Scholar 

  16. G.H. Koopmann, L. Song, J.B. Fahnline: A method for computing acoustic fields based on the principle of wave superposition, J. Acoust. Soc. Am. 86, 2433–2438 (1989)

    Article  Google Scholar 

  17. R. Bader: Microphone Arrays (Springer, Berlin, Heidelberg 2014)

    Book  Google Scholar 

  18. R. Bader: Radiation characteristics of multiple and single sound hole vihuelas and a classical guitar, J. Acoust. Soc. Am. 131, 819–827 (2012)

    Article  Google Scholar 

  19. R. Bader: Reconstruction of radiating sound fields using minimum energy method, J. Acoust. Soc. Am. 127, 300–308 (2010)

    Article  Google Scholar 

  20. T. Rossing: Chladni’s law for vibrating plates, Am. J. Phys. 50, 271–274 (1982)

    Article  Google Scholar 

  21. D. Waller: Chladni Figures: A Study in Symmetry (Bell, London 1961)

    MATH  Google Scholar 

  22. T.R. Moore, A.E. Cannaday, S.A. Zietlow: A simple and inexpensive optical technique to help students visualize mode shapes, J. Acoust. Soc. Am. 131, 2480–2487 (2012)

    Article  Google Scholar 

  23. J.R. Comer, M.J. Shepard, P.N. Henriksen, R.D. Ramsier: Chladni plates revisited, Am. J. Phys. 72, 1345–1346 (2004)

    Article  Google Scholar 

  24. H.A. Conklin: Design and tone in the mechanoiacoustic piano. Part II. Piano structure, J. Acoust. Soc. Am. 100, 695–708 (1996)

    Article  Google Scholar 

  25. N.E. Molin, L.E. Lindgren, E.V. Jansson: Parameters of violin plates and their influence on the plate modes, J. Acoust. Soc. Am. 83, 281–291 (1988)

    Article  Google Scholar 

  26. P.G.M. Richardson, E.R. Toulson, D.J.E. Nunn: Analysis and manipulation of modal ratios of cylindrical drums, J. Acoust. Soc. Am. 131, 907–913 (2012)

    Article  Google Scholar 

  27. T.D. Rossing, A. Perrier: Modal analysis of a Korean bell, J. Acoust. Soc. Am. 94, 2431–2433 (1993)

    Article  Google Scholar 

  28. T. Rossing, I. Bork, H. Zhao, D.O. Fystrom: Acoustics of snare drums, J. Acoust. Soc. Am. 92, 84–94 (1992)

    Article  Google Scholar 

  29. T.J. Hill, B.E. Richardson, S.J. Richardson: Acoustical parameters for the characterization of the classical guitar, Acta Acust. united with Acust. 90, 335–348 (2004)

    Google Scholar 

  30. M.L. Facchinetti, X. Boutillon, A. Constantinescu: Numerical and experimental modal analysis of the reed and pipe of a clarinet, J. Acoust. Soc. Am. 113, 2874–2883 (2003)

    Article  Google Scholar 

  31. G. Jundt, A. Radu, E. Fort, J. Duda, H. Vach, N. Fletcher: Vibrational modes of partly filled wine glasses, J. Acoust. Soc. Am. 119, 3793–3798 (2006)

    Article  Google Scholar 

  32. R. Jones, C. Wykes: Holographic and Speckle Pattern Interferometry (Cambridge Univ. Press, Cambridge 1989)

    Book  Google Scholar 

  33. B. Richardson: The acoustical development of the guitar, J. Catgut Acoust. Soc. 2, 1–10 (1994)

    Google Scholar 

  34. G.M. Brown, R.M. Grant, G.W. Stroke: Theory of holographic interferometry, J. Acoust. Soc. Am. 45, 1166–1179 (1969)

    Article  Google Scholar 

  35. B. Copeland, A. Morrison, T. Rossing: Sound radiation from caribbean steelpans, J. Acoust. Soc. Am. 117, 375–383 (2005)

    Article  Google Scholar 

  36. L.A. Stephey, T.R. Moore: Experimental investigation of an american five-string banjo, J. Acoust. Soc. Am. 124, 3276–3283 (2008)

    Article  Google Scholar 

  37. T.R. Moore, J.D. Kaplon, G.D. McDowall, K.A. Martin: Vibrational modes of trumpet bells, J. Sound Vib. 254, 777–786 (2002)

    Article  Google Scholar 

  38. R. Worland: Normal modes of a musical drumhead under non-uniform tension, J. Acoust. Soc. Am. 127, 525–533 (2010)

    Article  Google Scholar 

  39. A.E. Cannaday, B.C. August, T.R. Moore: Tuning the nigerian slit gong, J. Acoust. Soc. Am. 131, 1566–1573 (2012)

    Article  Google Scholar 

  40. B.M. Deutsch, C.L. Ramirez, T.R. Moore: The dynamics and tuning of orchestral crotales, J. Acoust. Soc. Am. 116, 2427–2433 (2004)

    Article  Google Scholar 

  41. R. Worland: Musical acoustics of orchestral water crotales, J. Acoust. Soc. Am. 131, 935–944 (2012)

    Article  Google Scholar 

  42. T.R. Moore, S.A. Zietlow: Interferometric studies of a piano soundboard, J. Acoust. Soc. Am. 119, 1783–1793 (2006)

    Article  Google Scholar 

  43. A.E. Ennos: Speckle Interferometry (Springer, New York 1984) pp. 203–253, ed. by C. Dainty

    Google Scholar 

  44. T.R. Moore, J.J. Skubal: Time-averaged electronic speckle pattern interferometry in the presence of ambient motion. Part 1. Theory and experiments, Appl. Opt. 47, 4640–4648 (2008)

    Article  Google Scholar 

  45. T.R. Moore: A simple design for an electronic speckle pattern interferometer, Am. J. Phys. 72, 1380–1384 (2004)

    Article  Google Scholar 

  46. T.R. Moore: A simple design for an electronic speckle pattern interferometer, Am. J. Phys. 73, 189 (2005)

    Article  Google Scholar 

  47. Y. Yeh, H.Z. Cummins: Localized fluid flow measurements with an he-ne laser spectrometer, Appl. Phys. Lett. 4, 176–178 (1964)

    Article  Google Scholar 

  48. T. Ryan, P. O’Malley, J. Vignola, J. Judge: Conformal scanning laser doppler vibrometer measurement of tenor steelpan response to impluse excitation, J. Acoust. Soc. Am. 132, 3494–3501 (2012)

    Article  Google Scholar 

  49. E. Skrodzka, A. Lapa, B.B. Linde, E. Rosenfeld: Modal parameters of two incomplete and complete guitars differing in the bracing pattern of the soundboard, J. Acoust. Soc. Am. 130, 2186–2194 (2011)

    Article  Google Scholar 

  50. V. Chatziioannou, W. Kausel, T. Moore: The effect of wall vibrations on the air column inside trumpet bells. In: Proc. Acoustics Nantes Conf. EAA, Nantes (2012) pp. 2243–2248

    Google Scholar 

  51. E. De Lauro, S. De Martino, E. Esposito, M. Falanga, E.P. Tomasini: Analogical model for mechanical vibrations in flue organ pipes inferred by independent component analysis, J. Acoust. Soc. Am. 122, 2413–2424 (2007)

    Article  Google Scholar 

  52. E. Hecht: Optics, 4th edn. (Addison Wesley, San Francisco 2002) pp. 560–578

    Google Scholar 

  53. L.E. Lyshevski: MEMS and NEMS: Systems, Devices and Structures (CRC, Boca Raton 2001)

    Google Scholar 

  54. H. Suzuki: Vibration and sound radiation of a piano soundboard, J. Acoust. Soc. Am. 80, 1573–1582 (1986)

    Article  Google Scholar 

  55. J. Berthaut, M.N. Ichchou, L. Jézéquel: Piano soundboard: structural behavior, numerical and experimental study in the modal range, Appl. Acoust. 64, 1113–1136 (2003)

    Article  Google Scholar 

  56. O. Inácio, L.L. Henrique, J. Antunes: The dynamics of tibetan singing bowls, Acta Acust. united with Acust. 92, 637–653 (2006)

    Google Scholar 

  57. C. Waltham, A. Kotlicki: Vibrational characteristics of harp soundboards, J. Acoust. Soc. Am. 124, 1774–1780 (2008)

    Article  Google Scholar 

  58. D.J. Ewins: Modal Testing: Theory, Practice and Application (Research Studies, Baldock 2000) pp. 25–286

    Google Scholar 

  59. A.H. Benade, M.I. Ibisi: Survey of impedance methods and a new piezo-disk-driven impedance head for air columns, J. Acoust. Soc. Am. 81, 1152–1167 (1987)

    Article  Google Scholar 

  60. J.C. Webster: An electrical method of measuring the intonation of cup-mouthpiece instruments, J. Acoust. Soc. Am. 19, 902–906 (1947)

    Article  Google Scholar 

  61. J. Agulló, J. Badrinas: Improving the accuracy of the cappillary based technique for measuring the acoustic impedance of wind instruments, Acustica 59, 76–83 (1985)

    Google Scholar 

  62. W. Kausel: Bore reconstruction of tubular ducts from its acoustic input impedance curve. In: Proc. IEEE Instrument Measurement Technol. Conf., New York (2003) pp. 993–998

    Google Scholar 

  63. S. Elliott, J. Bowsher, P. Watkinson: Input and transfer response of brass wind instruments, J. Acoust. Soc. Am. 72, 1747–1760 (1982)

    Article  Google Scholar 

  64. J.Y. Chung, D.A. Blaser: Transfer function method of measurring in-duct acoustic properties I. Theory, J. Acoust. Soc. Am. 68, 907–913 (1980)

    Article  Google Scholar 

  65. J.Y. Chung, D.A. Blaser: Transfer function method of measurring in-duct acoustic properties II. Experiment, J. Acoust. Soc. Am. 68, 914–921 (1980)

    Article  Google Scholar 

  66. V. Gibiat, F. Laloë: Acoustical impedance measurements by the two-microphone-three-calibration (TMTC) method, J. Acoust. Soc. Am. 88, 2533–2545 (1990)

    Article  Google Scholar 

  67. P.-P. Dalmont: Acoustic impedance measurement, Part I: A review, J. Sound. Vib. 243, 427–439 (2001)

    Article  Google Scholar 

  68. M. van Walstijn, D.M. Campbell, J. Kemp, D. Sharp: Wideband measurement of the acoustic impedance of tubular objects, Acta Acust. united with Acust. 91, 590–604 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Moore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moore, T. (2018). Measurement Techniques. In: Bader, R. (eds) Springer Handbook of Systematic Musicology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55004-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55004-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55002-1

  • Online ISBN: 978-3-662-55004-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics