Skip to main content

Construction of Wooden Musical Instruments

  • Chapter
Springer Handbook of Systematic Musicology

Part of the book series: Springer Handbooks ((SHB))

Abstract

This work aims to provide an overview of why and how wood is used in musical instruments, primarily strings, woodwind and percussion. The introduction is a description of the desirable properties of a musical instrument and how these relate to the physical properties of wood. A summary is given of the most important woods mentioned in this chapter, including common and Latin names. Section 4.2 discusses the physical properties of woods most relevant to musical instruments and how they relate to their biological taxonomy and also to organology. Sections 4.3 and 4.4 are devoted respectively to woods that make up the acoustically radiant parts of instruments (tonewoods), and those whose function is to transmit vibrations from one part to another, or are simply structural (framewoods). Section 4.5 deals with how the wood is selected, prepared, assembled into an instrument, and finished.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

ACE:

acoustic conversion efficiency

References

  1. I.R. Titze, J. Sundberg: Vocal intensity in speakers and singers, J. Acoust. Soc. Am. 91, 2936–2976 (1992)

    Article  Google Scholar 

  2. S. Yoshikawa: Acoustical classification of woods for string instruments, J. Acoust. Soc. Am. 122, 568–573 (2007)

    Article  Google Scholar 

  3. T. Ono: Transient response of wood for musical instruments and its mechanism in vibrational property, J. Acoust. Soc. Jpn. (E) 12, 117–124 (1999)

    Article  Google Scholar 

  4. T. Ono, S. Miyakoshi, U. Watanabe: Acoustic characteristics of unidirectionally fiber-reinforced polyurethane foam composites for musical instrument soundboards, Acoust. Sci. Technol. 23, 135–142 (2001)

    Article  Google Scholar 

  5. J. Schelleng: The violin as a circuit, J. Acoust. Soc. Am. 35, 326–338 (1963)

    Article  Google Scholar 

  6. D.E. Kretschmann: Mechanical properties of wood. In: The Wood Handbook, ed. by R.J. Ross (US Department of Agriculture, Madison 2010)

    Google Scholar 

  7. E. Fukada: The vibration properties of wood I, J. Phys. Soc. Japan 5, 321–327 (1950)

    Article  Google Scholar 

  8. I. Barducci, G. Pasqualini: Measurement of the internal friction and the elastic constants of wood, Nuovo Cimento 5, 416–466 (1948)

    Article  Google Scholar 

  9. V. Bucur: Wood species for musical instruments. In: Acoustics of Wood, ed. by V. Bucur (Springer, Berlin 2006)

    Google Scholar 

  10. M.E. McIntyre, J. Woodhouse: On measuring the elastic and damping constants of orthotropic sheet materials, Acta Metallurg. 36, 1397–1416 (1988)

    Article  Google Scholar 

  11. R.B. Hoadley: Identifying Wood (Stevens, Newtown 1990)

    Google Scholar 

  12. I.M. Firth, A.S. Bell: The acoustical effects of wood veneer, Acustica 66, 114–116 (1988)

    Google Scholar 

  13. T. Gunji, E. Obataya, K. Aoyama: Vibrational properties of harp soundboard with respect to its multi-layered structure, J. Wood Sci. 58, 322–326 (2012)

    Article  Google Scholar 

  14. W. Liese: The Anatomy of Bamboo Culms (International Network for Bamboo and Rattan, Beijing 1998)

    Google Scholar 

  15. U.G.K. Wegst: Bamboo and wood in musical instruments, Annu. Rev. Mater. Res. 38, 323–349 (2008)

    Article  Google Scholar 

  16. D.W. Haines: On musical instrument wood, Catgut Acoust. Soc. Newsl. 31, 23–32 (1979)

    Google Scholar 

  17. C.Y. Barlow: Materials selection for musical instruments, Acoust. Aust. 19, 69–78 (1997)

    Google Scholar 

  18. I. Brémaud: Personal communication (2007)

    Google Scholar 

  19. U.G.K. Wegst, S. Oberhoff, M. Weller, M.F. Ashby: Materials for violin bows, Int. J. Mater. Res. 12, 1230–1237 (2007)

    Article  Google Scholar 

  20. S. Yoshikawa, M. Shinoduka, T. Senda: A comparison of string instruments based on wood properties: Biwa versus cello, Acoust. Sci. Technol. 29, 41–50 (2008)

    Article  Google Scholar 

  21. E. Obataya: Personal communication (2013)

    Google Scholar 

  22. H. Aizawa, E. Obataya, T. Ono, M. Norimoto: Acoustic converting efficiency and anisotropic nature of wood, Wood Res. 85, 81–83 (1998)

    Google Scholar 

  23. J.J.A. Janssen: The mechanical properties of bamboo used in construction. In: Bamboo Research in Asia, ed. by G. Lessard, A. Chouinard (International Development Research Centre, Ottawa 1980)

    Google Scholar 

  24. Y. Kubojima, Y. Inokuchi, Y. Suzuki, M. Tonosaki: Shear modulus of several kinds of japanese bamboo obtained by flexural vibration test, J. Wood Sci. 56, 64–70 (2010)

    Article  Google Scholar 

  25. B.A. Yankovskii: Dissimilarity of the acoustic parameters of unseasoned and aged wood, Sov. Phys. Acoust. 13, 125–127 (1967)

    Google Scholar 

  26. E. Obataya, T. Ono, M. Norimoto: Vibrational properties of wood along the grain, J. Mater. Sci. 35, 2993–3001 (2000)

    Article  Google Scholar 

  27. H. Aizawa: Frequency Dependence of Vibration Properties of Wood in the Longitudinal Direction (Kyoto Univ, Kyoto 1998)

    Google Scholar 

  28. T.D. Rossing, J. Yoo, A. Morrison: Acoustics of percussion instruments: An update, Acoust. Sci. Technol. 25, 406–412 (2004)

    Article  Google Scholar 

  29. I. Bork: Practical tuning of xylophone bars and resonators, Appl. Acoust. 46, 103–127 (1995)

    Article  Google Scholar 

  30. H.F. Meinel: Regarding the sound quality of violins and a scientific basis for violin construction, J. Acoust. Soc. Am. 29, 817–822 (1957)

    Article  Google Scholar 

  31. N.H. Fletcher, T.D. Rossing: The Physics of Musical Instruments (Springer, New York 1998)

    Book  Google Scholar 

  32. E. Meyer, E.G. Neumann: Physical and Applied Acoustics (Academic, New York 1972) pp. 14–22

    Google Scholar 

  33. A.H. Benade: Fundamentals of Musical Acoustics (Oxford Univ. Press, New York 1976)

    Google Scholar 

  34. C. Gough: Musical acoustics. In: Handbook of Acoustics, ed. by T. Rossing (Springer, New York 2007)

    Google Scholar 

  35. I.M. Firth: Acoustics of the harp, Acustica 37, 148–154 (1977)

    Google Scholar 

  36. S. Daltrop, C.E. Waltham, A. Kotlicki: Vibro-acoustic characteristics of an aoyama amphion concert harp, J. Acoust. Soc. Am. 128, 466–473 (2010)

    Article  Google Scholar 

  37. F. Fahy, P. Gardonio: Sound and Structural Vibration (Academic, Amsterdam 2007)

    Google Scholar 

  38. E.B. Davis: Designing soundboards with flexural disk models, Proc. Meet. Acoust. 12, 035003 (2012)

    Article  Google Scholar 

  39. O. Christensen, B.B. Vistinen: Simple model for low frequency guitar function, J. Acoust. Soc. Am. 68, 758–766 (1980)

    Article  Google Scholar 

  40. A. Askenfelt: Double bass. In: The Science of String Instruments, ed. by T.D. Rossing (Springer, New York 2010)

    Google Scholar 

  41. G. Weinreich: What science knows about violins, and what it does not know, Am. J. Phys. 61, 1067–1077 (1993)

    Article  Google Scholar 

  42. J. Schelleng: Erratum: The violin as a circuit, J. Acoust. Soc. Am. 35, 1291 (1963)

    Article  Google Scholar 

  43. J. Curtin, T.D. Rossing: Violin. In: The Science of String Instruments, ed. by T.D. Rossing (Springer, New York 2010)

    Google Scholar 

  44. C.E. Waltham: Harp. In: The Science of String Instruments, ed. by T.D. Rossing (Springer, New York 2010)

    Google Scholar 

  45. S. Daltrop, C.E. Waltham, A. Kotlicki, F. Gautier, B. Elie: Vibroacoustic characteristics of a gothic harp, J. Acoust. Soc. Am. 131, 837–843 (2012)

    Article  Google Scholar 

  46. E. Obataya, H. Akahoshi: Personal communication (2013)

    Google Scholar 

  47. L.J. Gibson, M.F. Ashby: Cellular Solids: Structure and Properties (Cambridge Univ. Press, New York 1988)

    MATH  Google Scholar 

  48. S. Yoshikawa: Plucked string instruments in Asia. In: The Science of String Instruments, ed. by T.D. Rossing (Springer, New York 2010)

    Google Scholar 

  49. A. Baines: The Oxford Companion to Musical Instruments (Oxford Univ. Press, New York 1992)

    Google Scholar 

  50. E. Obataya, H. Yamauchi: Applicability of laminated veneer cylinder to sustainable production of woodwind instruments. In: Proc. 2012 IUFRO (International Union of Forest Reserch Organisation, Copenhagen 2012)

    Google Scholar 

  51. I.M. Firth: Harps of the baroque period, J. Catgut Acoust. Soc. 1(II), 52–61 (1989)

    Google Scholar 

  52. T. Ono, I. Takahashi, Y. Takasu, Y. Miura, U. Watanabe: Acoustic characteristics of wadaiko (traditional Japanese drum) with wood plastic shell, Acoust. Sci. Technol. 30, 410–416 (2009)

    Article  Google Scholar 

  53. S. Simura: An Organology of Kokan Syakuhati (Old Pipe Syakuhati) (Shuppan-geijutsu-sha, Tokyo 2002)

    Google Scholar 

  54. E. Obataya, Y. Ohno, M. Norimoto, B. Tomita: Effects of oriental lacquer (urushi) coating on the vibrational properties of wood used for the soundboards of musical instruments, Acoust. Sci. Technol. 22, 27–34 (2001)

    Article  Google Scholar 

  55. S. Yamaguchi: Personal communication (2013)

    Google Scholar 

  56. Y. Ando: Acoustics of Musical Instruments (Ongaku-no-tomo-sha, Tokyo 1996)

    Google Scholar 

  57. R.B. Hoadley: Understanding Wood (Taunton, Newtown 2000)

    Google Scholar 

  58. T. Noguchi, E. Obataya, K. Ando: Effects of aging on the vibrational properties of wood, J. Cultural Herit. 13S, S21–S25 (2012)

    Article  Google Scholar 

  59. C. Fritz, J. Curtin, J. Poitevineau, P. Morrel-Samuels, F.-C. Taoi: Player preference among new and old violins, PNAS 109, 760–763 (2012)

    Article  Google Scholar 

  60. A. Thrasher: Personal communication (2013)

    Google Scholar 

  61. J. Curtin: Tap tones and weights of old violin tops, J. Violin Soc. Am. 20, 161–173 (2006)

    Google Scholar 

  62. E. Jansson: Acoustics for Violin and Guitar Makers, www.speech.kth.se/music/acviguit4/ (2013)

  63. A. Pizzi: Advanced Wood Adhesives Technology (Dekker, New York 1994)

    Google Scholar 

  64. E.M. Petrie: Handbook of Adhesives and Sealants (McGraw Hill, New York 2007)

    Google Scholar 

  65. H.A. Strobel: Violin Making Step by Step (Strobel, Oregon 1994)

    Google Scholar 

  66. G. Fry: The Varnishes of the Italian Violin Makers of the 16th and 17th Centuries and Their Influence on Tone (Stevens, London 1904)

    Google Scholar 

  67. C.Y. Barlow, J. Woodhouse: Of old wood and varnish: Peering into the can of worms, J. Catgut Acoust. Soc. 1, 2–9 (1989)

    Google Scholar 

  68. J. Schelleng: Acoustical effects of violin varnish, J. Acoust. Soc. Am. 44, 1176–1183 (1968)

    Article  Google Scholar 

  69. C.E. Waltham: The acoustics of harp soundboxes, Am. Harp J. 22, 26–31 (2010)

    Google Scholar 

  70. C. Hutchins, D. Voskuil: Mode tuning for the violin maker, Catgut Acoust. Soc. 2(4), 5–9 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Waltham .

Editor information

Editors and Affiliations

Appendix

Appendix

The quality factor Q is a measure of the damping of a material; the higher the Q the more resonant the material is. If τ is the time it takes for a system freely vibrating at frequency f0 to decay to 1 ∕ e times its original amplitude, then Q = πf0τ. Alternately, in the frequency domain, if the width of a resonance at half-power is Δf, then \(Q=f_{0}/\Updelta f\). In older texts damping is referred to as the logarithmic decrement δ, and for Q ≫ 1, \(Q\approx\uppi/\delta\) (or if the author is working in base-ten logarithms, \(Q\approx{\mathrm{1.365}}/\delta_{10}\). Another form is the dimensionless damping ratio \(\zeta=1/(2Q)\), the loss factor η and the loss angle ψ.

$$Q=\frac{1}{\eta}=\frac{\uppi}{\delta}=\frac{1}{\tan\psi}\;.$$
(4.B6)

Another important characteristic for instrument woods is vibration transmission [4.2, 4.20, 4.48]. If the damping is relatively weak, the characteristic acoustic transmission is the reciprocal of the attenuation constant α of the longitudinal wave. The solution of the lossy wave equation gives

$$\alpha^{-1}=\frac{2Q}{k}=\frac{2cQ}{\omega}\;,$$
(4.B7)

where k and ω are the wave number and angular frequency respectively [4.32, 4.48]. Since ω is not a wood property, cQ may be used instead of cQ ∕ ω to express the transmission characteristic of the vibration excited in wood. In the text, cQ is called the transmission parameter.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Waltham, C., Yoshikawa, S. (2018). Construction of Wooden Musical Instruments. In: Bader, R. (eds) Springer Handbook of Systematic Musicology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55004-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55004-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55002-1

  • Online ISBN: 978-3-662-55004-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics