Skip to main content

Content-Based Methods for Knowledge Discovery in Music

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter presents several computational approaches aimed at supporting knowledge discovery in music. Our work combines data mining, signal processing and data visualization techniques for the automatic analysis of digital music collections, with a focus on retrieving and understanding musical structure.

We discuss the extraction of midlevel feature representations that convey musically meaningful information from audio signals, and show how such representations can be used to synchronize different instances of a musical work and enable new modes of music content browsing and navigation. Moreover, we utilize these representations to identify repetitive structures and representative patterns in the signal, via self-similarity analysis and matrix decomposition techniques that can be made invariant to changes of local tempo and key. We discuss how structural information can serve to highlight relationships within music collections, and explore the use of information visualization tools to characterize the patterns of similarity and dissimilarity that underpin such relationships.

With the help of illustrative examples computed on a collection of recordings of Frédéric Chopin’s Mazurkas, we aim to show how these content-based methods can facilitate the development of novel modes of access, analysis and interaction with digital content that can empower the study and appreciation of music.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2-D:

two-dimensional

MFCC:

Mel-frequency cepstral coefficient

MIDI:

musical instrument digital interface

MIR:

music information retrieval

NCD:

normalized compression distance

PCP:

pitch class profile

RCD:

radial convergence diagram

SI-PLCA:

shift-invariant probabilistic latent component analysis

SSM:

self-similarity matrix

STFT:

short-term Fourier transform/short-time Fourier transform

References

  1. M.A. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, M. Slaney: Content-based music information retrieval: Current directions and future challenges, Proc. IEEE 96(4), 668–696 (2008)

    Article  Google Scholar 

  2. M. Slaney: Web-scale multimedia analysis: Does content matter?, Multimed. IEEE 18(2), 12–15 (2011)

    Article  Google Scholar 

  3. H. Schenker: Der freie Satz (Universal, Vienna 1935)

    Google Scholar 

  4. A. Ockelford: Repetition in Music: Theoretical and Metatheoretical Perspectives (Ashgate, London 2005)

    Google Scholar 

  5. D. Huron: Sweet Anticipation: Music and the Psychology of Expectation (MIT Press, Cambridge 2006)

    Google Scholar 

  6. M.J. Bruderer, M. McKinney, A. Kohlrausch: Structural boundary perception in popular music. In: Proc. Int. Conf. Music Inf. Retr. (ISMIR), Victoria (2006) pp. 198–201

    Google Scholar 

  7. G. Peeters, E. Deruty: Is music structure annotation multi-dimensional? A proposal for robust local music annotation. In: Proc. 3rd Workshop Learn. Semant. Audio Signals, Graz (2009) pp. 75–90

    Google Scholar 

  8. The AHRC Research Centre for the History and Analysis of Recorded Music: Website of the Mazurka Project, http://www.mazurka.org.uk/

  9. C.S. Sapp: Comparative analysis of multiple musical performances. In: Proc. Int. Conf. Music Inf. Retr. (ISMIR), Vienna (2007) pp. 497–500

    Google Scholar 

  10. C.S. Sapp: Hybrid numeric/rank similarity metrics. In: Proc. Int. Conf. Music Inf. Retr. (ISMIR), Philadelphia (2008) pp. 501–506

    Google Scholar 

  11. E. Pampalk: Computational Models of Music Similarity and Their Application to Music Information Retrieval, Ph.D. Thesis (Vienna University of Technology, Vienna 2006)

    Google Scholar 

  12. S. Essid: Classification Automatique des Signaux Audio-Fréquences: Reconnaissance des Instruments de Musique, Ph.D. Thesis (Université Pierre et Marie Curie, Paris 2005)

    Google Scholar 

  13. G. Peeters: A large set of audio features for sound description (similarity and classification) in the CUIDADO project, http://recherche.ircam.fr/anasyn/peeters/ARTICLES/Peeters_2003_cuidadoaudiofeatures.pdf (Ircam, Analyis/Synthesis Team, Paris 2004), version 1.0

  14. A. Sheh, D.P.W. Ellis: Chord segmentation and recognition using EM-trained hidden Markov models. In: Proc. Int. Conf. Music Inf. Retr. (ISMIR), Baltimore (2003)

    Google Scholar 

  15. D.P.W. Ellis, G.E. Poliner: Identifying ‘cover songs’ with chroma features and dynamic programming beat tracking. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Honolulu (2007)

    Google Scholar 

  16. J. Serrà, E. Gómez, P. Herrera, X. Serra: Chroma binary similarity and local alignment applied to cover song identification, IEEE Trans. Audio Speech Lang. Process. 16, 1138–1151 (2008)

    Article  Google Scholar 

  17. E. Gómez: Tonal Description of Music Audio Signals, Ph.D. Thesis (Universitat Pompeu Fabra, Barcelona 2006)

    Google Scholar 

  18. M. Mauch, K. Noland, S. Dixon: Using musical structure to enhance automatic chord transcription. In: Proc. Int. Conf. Music Inf. Retr. (ISMIR), Kobe (2009) pp. 231–236

    Google Scholar 

  19. M. Müller: Information Retrieval for Music and Motion (Springer, Berlin, Heidelberg 2007)

    Book  Google Scholar 

  20. R.N. Shepard: Circularity in judgments of relative pitch, J. Acoust. Soc. Am. 36(12), 2346–2353 (1964)

    Article  Google Scholar 

  21. T. Fujishima: Realtime chord recognition of musical sound: A system using common lisp music. In: Proc. ICMC, Beijing (1999) pp. 464–467

    Google Scholar 

  22. M. Mauch, S. Dixon: Approximate note transcription for the improved identification of difficult chords. In: Proc. 11th Int. Soc. Music Inf. Retr. Conf. (ISMIR), Utrecht (2010) pp. 135–140

    Google Scholar 

  23. M. Müller, S. Ewert: Towards timbre-invariant audio features for harmony-based music, IEEE Trans. Audio Speech Lang. Process. 18(3), 649–662 (2010)

    Article  Google Scholar 

  24. I.T. Jolliffe: Principal Component Analysis (Springer, New York 2002)

    MATH  Google Scholar 

  25. N. Hu, R.B. Dannenberg, G. Tzanetakis: Polyphonic audio matching and alignment for music retrieval. In: Proc. IEEE Workshop Appl. Signal Process. Audio Acoust. (WASPAA), New Paltz (2003)

    Google Scholar 

  26. S. Ewert, M. Müller, P. Grosche: High resolution audio synchronization using chroma onset features. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Taipei (2009) pp. 1869–1872

    Google Scholar 

  27. C. Fremerey, F. Kurth, M. Müller, M. Clausen: A demonstration of the SyncPlayer system. In: Proc. 8th Int. Conf. Music Inf. Retr. (ISMIR), Vienna (2007) pp. 131–132

    Google Scholar 

  28. D. Damm, C. Fremerey, F. Kurth, M. Müller, M. Clausen: Multimodal presentation and browsing of music. In: Proc. 10th Int. Conf. Multimodal Interfaces (ICMI), Chania (2008) pp. 205–208

    Google Scholar 

  29. M. Müller, V. Konz, N. Jiang, Z. Zuo: A multi-perspective user interface for music signal analysis. In: Proc. Int. Computer Music Conf. (ICMC), Huddersfield (2011)

    Google Scholar 

  30. M. Goto: A chorus section detection method for musical audio signals and its application to a music listening station, IEEE Trans. Audio Speech Lang. Process. 14(5), 1783–1794 (2006)

    Article  Google Scholar 

  31. J. Foote: Visualizing music and audio using self-similarity. In: Proc. ACM Int. Conf. Multimed., Orlando (1999) pp. 77–80

    Google Scholar 

  32. J. Foote: Automatic audio segmentation using a measure of audio novelty. In: Proc. IEEE Int. Conf. Multimed. Expo (ICME), New York (2000) pp. 452–455

    Google Scholar 

  33. G. Peeters: Sequence representation of music structure using higher-order similarity matrix and maximum-likelihood approach. In: Proc. Int. Conf. Music Inf. Retr. (ISMIR), Vienna (2007) pp. 35–40

    Google Scholar 

  34. M. Goto: A chorus-section detecting method for musical audio signals. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Hong Kong (2003) pp. 437–440

    Google Scholar 

  35. M.A. Bartsch, G.H. Wakefield: Audio thumbnailing of popular music using chroma-based representations, IEEE Trans. Multimed. 7(1), 96–104 (2005)

    Article  Google Scholar 

  36. J. Paulus, M. Müller, A. Klapuri: Audio-based music structure analysis. In: Proc. 11th Int. Conf. Music Inf. Retr. (ISMIR), Utrecht (2010) pp. 625–636

    Google Scholar 

  37. N. Marwan, M.C. Romano, M. Thiel, J. Kurths: Recurrence plots for the analysis of complex systems, Phys. Rep. 438(5/6), 237–329 (2007)

    Article  MathSciNet  Google Scholar 

  38. G. Tzanetakis, P. Cook: Musical genre classification of audio signals, IEEE Trans. Speech Audio Process. 10(5), 293–302 (2002)

    Article  Google Scholar 

  39. M. Slaney, M. Casey: Locality sensitive hashing for finding nearest neighbours, IEEE Signal Process. Mag. 25(2), 128–131 (2008)

    Article  Google Scholar 

  40. J. Serrà, X. Serra, R.G. Andrzejak: Cross recurrence quantification for cover song identification, New J. Phys. 11(9), 093017 (2009)

    Article  Google Scholar 

  41. T. Cho, J. Forsyth, L. Kang, J.P. Bello: Time-varying delay effects based on recurrence plots. In: Proc. 14th Int. Conf. Digit. Audio Eff. (DAFx), Paris (2011)

    Google Scholar 

  42. M. Müller, F. Kurth: Enhancing similarity matrices for music audio analysis. In: Proc. 32nd Int. Conf. Acoust. Speech Signal Process. (ICASSP), Toulouse (2006) pp. 437–440

    Google Scholar 

  43. M. Müller, M. Clausen: Transposition-invariant self-similarity matrices. In: Proc. 8th Int. Conf. Music Inf. Retr. (ISMIR), Vienna (2007) pp. 47–50

    Google Scholar 

  44. R.B. Dannenberg, M. Goto: Music structure analysis from acoustic signals. In: Handbook of Signal Processing in Acoustics, Vol. 1, ed. by D. Havelock, S. Kuwano, M. Vorländer (Springer, New York 2008) pp. 305–331

    Chapter  Google Scholar 

  45. T. Izumitani, K. Kashino: A robust musical audio search method based on diagonal dynamic programming matching of self-similarity matrices. In: Proc. 9th Int. Conf. Music Inf. Retr. (ISMIR), Philadelphia (2008) pp. 609–613

    Google Scholar 

  46. J.P. Bello: Measuring structural similarity in music, IEEE Trans. Audio Speech Lang. Process. 19(7), 2013–2025 (2011)

    Article  Google Scholar 

  47. W. Xie, N.V. Sahinidis: A Branch-and-reduce algorithm for the contact map overlap problem, Res. Comput. Biol. (RECOMB 2006), Lect. Notes Bioinform. 3909, 516–529 (2006)

    MATH  Google Scholar 

  48. N. Krasnogor, D.A. Pelta: Measuring the similarity of protein structures by means of the universal similarity metric, Bioinformatics 20(7), 1015–1021 (2004)

    Article  Google Scholar 

  49. J.P. Bello: Grouping recorded music by structural similarity. In: Proc. Int. Conf. Music Inf. Retr. (ISMIR), Kobe (2009)

    Google Scholar 

  50. I. Borg, P. Groenen: Modern Multidimensional Scaling (Springer, New York 1997)

    Book  Google Scholar 

  51. P. Toiviainen: Visualization of tonal content with self-organizing maps and self-similarity matrices, Comput. Entertain. 3(4), 1–10 (2005)

    Article  Google Scholar 

  52. K.W. Church, J.I. Helfman: Dotplot: A program for exploring self-similarity in millions of lines for text and code, J. Am. Stat. Assoc., Inst. Math. Stat. Interface Found. North Am. 2(2), 153–174 (1993)

    Google Scholar 

  53. E.L.L. Sonnhammer, J.C. Wootton: Dynamic contact maps of protein structures, J. Mol. Graph. Modell. 16(33), 1–5 (1998)

    Article  Google Scholar 

  54. M. Lima: VC blog on Radial Convergencehttp://www.visualcomplexity.com/vc/blog/?p=876 (2011)

  55. M.I. Krzywinski, J.E. Schein, I. Birol, J. Connors, R. Gascoyne, D. Horsman, S.J. Jones, M.A. Marra: Circos: An information aesthetic for comparative genomics, Genome Res. 19(9), 1639–1645 (2009)

    Article  Google Scholar 

  56. R.J. Weiss, J.P. Bello: Identifying repeated patterns in music using sparse convolutive non-negative matrix factorization. In: Proc. Int. Conf. Music Inf. Retr. (ISMIR), Utrecht (2010) pp. 123–128

    Google Scholar 

  57. R.J. Weiss, J.P. Bello: Unsupervised discovery of temporal structure in music, IEEE J. Sel. Top. Signal Process. 5(6), 1240–1251 (2011)

    Article  Google Scholar 

  58. P. Grosche, M. Müller, C.S. Sapp: What makes beat tracking difficult? A case study on Chopin Mazurkas. In: Proc. 11th Int. Conf. Music Inf. Retr. (ISMIR), Utrecht (2010) pp. 649–654

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation, under grant IIS-0844654, and the Cluster of Excellence on Multimodal Computing and Interaction at Saarland University. The authors would like to thank Craig Sapp for kindly providing access to the Mazurka dataset and beat annotations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Bello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bello, J.P., Grosche, P., Müller, M., Weiss, R. (2018). Content-Based Methods for Knowledge Discovery in Music. In: Bader, R. (eds) Springer Handbook of Systematic Musicology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55004-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55004-5_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55002-1

  • Online ISBN: 978-3-662-55004-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics