Skip to main content

Room Acoustics – Fundamentals and Computer Simulation

  • Chapter
Book cover Springer Handbook of Systematic Musicology

Part of the book series: Springer Handbooks ((SHB))

Abstract

In room acoustics analytical formulas and computer simulations can be used to predict the acoustics of spaces, not only in terms of reverberation but other perceptual aspects, too, which are related to the perception of music or speech. In this context the room impulse response is the function of main interest. It can be measured by using sophisticated instrumentation and signal processing, or it can be simulated with computer models. In the process of auralization the data and signal processing enables one to listen into the simulated rooms in order to interpret the sound in the room aurally. In real-time implementation, this is a valuable extension of the technique of virtual reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

ASW:

apparent source width

BEM:

boundary element method

CT:

center time

EDT:

early decay time

FDTD:

finite-difference time domain

FEM:

finite element method

FFT:

fast Fourier transform

FHT:

fast Hadamard transformation

HRIR:

head-related impulse response

HRTF:

head-related transfer function

JND:

just-noticeable difference

LEV:

listener envelopment

LF:

lateral energy fraction

LTI:

linear time-invariant

MLS:

maximum length sequence

WFA:

wave field analysis

References

  1. ISO 3382: Measurement of the reverberation time of rooms with reference to other acoustical parameters (1995)

    Google Scholar 

  2. L. Beranek: Concert Halls and Opera Houses – Music, Acoustics and Architecture, 2nd edn. (Springer, New York 2004)

    Google Scholar 

  3. M. Barron: Auditorium Acoustics and Architectural Design, 2nd edn. (E&FN SPON, London 2010)

    Google Scholar 

  4. M.R. Schröder: Die statistischen Parameter der Frequenzkurven von großen Räumen, Acustica 4, 595 (1954)

    Google Scholar 

  5. H. Kuttruff, M.R. Schroeder: On frequency response curves in rooms. Comparison of experimental, theoretical, and Monte Carlo results for the average frequency spacing between maxima, J. Acoust. Soc. Am. 34, 76 (1962)

    Article  Google Scholar 

  6. W.C. Sabine: The American Architect 1900. Collected Papers Nr. 1 (Harvard Univ. Press, Cambridge 1922)

    Google Scholar 

  7. R.F. Norris, C.A. Andree: An instrumental method of reverberation measurement, J. Acoust. Soc. Am. 3, 366 (1930)

    Article  Google Scholar 

  8. C.F. Eyring: Methods of calculating the average coefficient of sound absorption, J. Acoust. Soc. Am. 4, 178 (1933)

    Article  Google Scholar 

  9. M. Vorländer: Revised relation between the sound power and the average sound pressure level in rooms, Acustica 81, 332 (1995)

    Google Scholar 

  10. L. Cremer: Die wissenschaftlichen Grundlagen der Raumakustik (Hirzel, Stuttgart 1948)

    Google Scholar 

  11. J. Blauert: Spatial Hearing – Revised Edition: The Psychophysics of Human Sound Localization (MIT Press, Cambridge 1996)

    Google Scholar 

  12. M.R. Schroeder: New method for measuring reverberation time, J. Acoust. Soc. Am. 37, 409 (1965)

    Article  Google Scholar 

  13. M. Guski, M. Vorländer: Comparison of noise compensation methods for room acoustic impulse response evaluations, Acust. Acta Acust. 100, 320 (2014)

    Article  Google Scholar 

  14. N. Xiang: Evaluation of reverberation times using a nonlinear regression approach, J. Acoust. Soc. Am. 98, 2112 (1995)

    Article  Google Scholar 

  15. S. Müller: Computer-generated pulse signal applied for sound measurements. In: ASA Handbook of Signal Processing in Acoustics, ed. by D. Havelock, S. Kuwano, M. Vorländer (Springer, New York 2005)

    Google Scholar 

  16. A. Farina: Simultaneous measurement of impulse response and distortion with a swept-sine technique. In: AES 108th Convention, Paris (2000)

    Google Scholar 

  17. P. Dietrich, B. Masiero, M. Vorländer: On the optimization of the multiple exponential sweep method, J. Audio Eng. Soc. 61(3), 113 (2013)

    Google Scholar 

  18. D. Rife, J. Vanderkooy: Transfer-function measurement with maximum-length sequences, J. Audio Eng. Soc. 37, 419 (1989)

    Google Scholar 

  19. M. Vorländer, M. Kob: Practical aspects of MLS measurements in building acoustics, Appl. Acoust. 52, 239 (1997)

    Article  Google Scholar 

  20. R. Thiele: Richtungsverteilung und Zeitfolge der Schallrückwürfe in Räumen, Acustica 3, 291 (1953)

    Google Scholar 

  21. V.L. Jordan: Acoustical criteria for auditoriums and their relation to model techniques, J. Acoust. Soc. Am. 47, 408 (1970)

    Article  Google Scholar 

  22. W. Reichardt, O.A. Alim, W. Schmidt: Abhängigkeit der Grenzen zwischen brauchbarer und unbrauchbarer Durchsichtigkeit von der Art des Musikmotives, der Nachhallzeit und der Nachhalleinsatzzeit, Appl. Acoust. 7, 243 (1974)

    Article  Google Scholar 

  23. W. Wilkens: Mehrdimensionale Beschreibung subjektiver Beurteilungen der Akustik von Konzertsälen, Ph.D. Thesis (Technical University Berlin, Berlin 1975)

    Google Scholar 

  24. P. Lehmann: Über die Ermittlung raumakustischer Kriterien und deren Zusammenhang mit subjektiven Beurteilungen der Hörsamkeit, Ph.D. Thesis (Technical University Berlin, Berlin 1976)

    Google Scholar 

  25. D. Gottlob: Vergleich objektiver Parameter mit Ergebnissen subjektiver Untersuchungen an Konzertsälen, Ph.D. Thesis (Göttingen University, Göttingen 1973)

    Google Scholar 

  26. K.F. Siebrasse: Vergleichende subjektive Untersuchungen zur Akustik von Konzertsälen, Ph.D. Thesis (Göttingen University, Göttingen 1973)

    Google Scholar 

  27. J. West: Possible subjective significance of the ratio of height to width of concert halls, J. Acoust. Soc. Am. 40, 1245 (1966)

    Article  Google Scholar 

  28. H. Marshall: Levels of reflection masking in concert halls, J. Sound Vib. 5, 116 (1968)

    Article  Google Scholar 

  29. M. Barron: The effects of early reflections on subjective acoustical quality of concert halls, Ph.D. Thesis (Southampton University, Southampton 1976)

    Google Scholar 

  30. P. Damaske, Y. Ando: Interaural crosscorrelation for multichannel loudspeaker reproduction, Acustica 27, 232 (1972)

    Google Scholar 

  31. H. Kuttruff: Room Acoustics (Elsevier, Amsterdam 1973)

    Book  Google Scholar 

  32. J. Meyer: Trends in concert hall design – A review of the past 50 years. In: 26 Tonmeistertagung – VDT Int. Convention (2010), in German

    Google Scholar 

  33. D. van Maerke: Simulation of sound fields in time and frequency domain using a geometrical model. In: Proc. 12th ICA, Toronto, Vol. 2 (1986), paper E11-7

    Google Scholar 

  34. M. Vorländer: Simulation of the transient and steady state sound propagation in rooms using a new combined sound particle – Image source algorithm, J. Acoust. Soc. Am. 86, 172 (1989)

    Article  Google Scholar 

  35. B.I. Dalenbäck: Room acoustic prediction based on a unified treatment of diffuse and specular reflection, J. Acoust. Soc. Am. 100, 899 (1996)

    Article  Google Scholar 

  36. G.M. Naylor: Odeon-another hybrid room acoustical model, Appl. Acoust. 38, 131 (1993)

    Article  Google Scholar 

  37. M. Vorländer: International round robin on room acoustical computer simulations. In: Proc. 15th ICA, Trondheim (1995) p. 689

    Google Scholar 

  38. I. Bork: A Comparison of room simulation software – The 2nd round robin on room acoustical computer simulation, Acust. Acta Acust. 84, 943 (2000)

    Google Scholar 

  39. I. Bork: Report on the 3rd round robin on room acoustical computer simulation – Part II: Calculations, Acust. Acta Acust. 91, 753 (2005)

    Google Scholar 

  40. ISO 17497-1: Acoustics – Measurement of the sound scattering properties of surfaces – Part 1: Measurement of the random-incidence scattering coefficient in a reverberation room (2004)

    Google Scholar 

  41. F.P. Mechel: Improved mirror source method in room acoustics, J. Sound Vib. 256(5), 873 (2002)

    Article  Google Scholar 

  42. S. Siltanen, T. Lokki, S. Kiminki, L. Savioja: The room acoustic rendering equation, J. Acoust. Soc. Am. 122(3), 1624 (2007)

    Article  Google Scholar 

  43. M. Vorländer: Auralization – Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality (Springer, Berlin 2008)

    Google Scholar 

  44. D. Lee, D. Cabrera, W.L. Martens: Equal reverberance contours for synthetic room impulse responses listened to directly: Evaluation of reverberance in terms of loudness decay parameters. In: Int. Symp. Room Acoust., Melbourne (2010)

    Google Scholar 

  45. J.H. Chalupper: Fastl: Dynamic loudness model (DLM) for normal and hearing-impaired listeners, Acust. Acta Acust. 88, 379 (2002)

    Google Scholar 

  46. DIN 45631 A1: Calculation of loudness level and loudness from the sound spectrum – Zwicker method – Amendment 1: Calculation of the loudness of time-variant sound (2010)

    Google Scholar 

  47. L.A. Jeffress: A place theory of sound localization, J. Comp. Physiol. Psychol. 41, 35 (1948)

    Article  Google Scholar 

  48. W. Lindemann: Extension of a binaural cross-correlation model by means of contralateral inhibition. II. The law of the first wave front, J. Acoust. Soc. Am. 80, 1623 (1986)

    Article  Google Scholar 

  49. T. Dau, D. Püschel, A. Kohlrausch: A quantitative model of the effective signal processing in the auditory system. I. Model structure, J. Acoust. Soc. Am. 99, 3615 (1996)

    Article  Google Scholar 

  50. J. Breebaart, S. van de Par, A. Kohlrausch: Binaural processing model based on contralateral inhibition. I. Model setup, J. Acoust. Soc. Am. 110, 1074 (2001)

    Article  Google Scholar 

  51. J. van Dorp Schuitman, D. de Vries: Deriving Room Acoustical Parameters Using Arrays and Hearing Models (NAG/DAGA, Rotterdam 2009)

    Google Scholar 

  52. ISO/IEC Guide 98: Guide to the expression of uncertainty in measurement (GUM) (1993)

    Google Scholar 

  53. R. San Martín, I. Witew, M. Arana, M. Vorländer: Influence of the source orientation on the measurement of acoustic parameters, Acust. Acta Acust. 93, 387 (2007)

    Google Scholar 

  54. I. Witew, A. Lindau, J. van Dorp Schuitman, M. Vorländer, S. Weinzierl, D. de Vries: Application of GUM concepts on uncertainties of IACC caused by dummy head orientation (DAGA, Berlin 2010)

    Google Scholar 

  55. T. Lokki, J. Pätynen, A. Kuusinen, S. Tervo: Concert hall acoustics: Repertoire, listening position and individual taste of the listeners influence the qualitative attributes and preferences, J. Acoust. Soc. Am. 140(1), 551 (2016)

    Article  Google Scholar 

  56. S. Weinzierl, M. Vorländer: Room acoustical parameters as predictors of room acoustical impression: What do we know and what would we like to know?, Acoust. Aust. 1, 41 (2015)

    Article  Google Scholar 

  57. T. Beghin: The Virtual Haydn (University of Chicago Press, Chicago 2015)

    Book  Google Scholar 

  58. D. de Vries, E.M. Hulsebos, J. Baan: Spatial fluctuations in measures for spaciousness, J. Acoust. Soc. Am. 110, 947 (2001)

    Article  Google Scholar 

  59. A.J. Berkhout, D. de Vries, J.J. Sonke: Array technology for acoustic wave field analysis in enclosures, J. Acoust. Soc. Am. 102, 2757 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Vorländer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vorländer, M. (2018). Room Acoustics – Fundamentals and Computer Simulation. In: Bader, R. (eds) Springer Handbook of Systematic Musicology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55004-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55004-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55002-1

  • Online ISBN: 978-3-662-55004-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics