Skip to main content

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

This chapter focuses on the utilization of lignin in the production of epoxy resins. The incorporation methods of lignin in manufacture of epoxy resins can be classified into three categories: (i) physical blending of lignin and epoxy resin, (ii) pre-modification of lignin before epoxidation, and (iii) direct epoxidation of lignin. The presence of lignin in epoxy resin changes the chemistry of the resultant product and hence affects the thermal and mechanical properties of the epoxy resin. Furthermore, the curing kinetics, mechanical and thermal properties of the synthesized lignin-based epoxy resins were compared with the conventional petroleum-based epoxy resins. The results indicated that lignin could be a promising bio-replacement of bisphenol-A in the production of various epoxy resins with acceptable performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang J (1998) Modifications of epoxy resins with functional hyperbranched poly(acrylene)s, Ph.D. thesis. Virginia Polytechnic Institute and State University

    Google Scholar 

  2. Acmite Market Intelligence (2014) Market report: Global epoxy resin market. http://www.acmite.com/brochure/Brochure-Epoxy-Resin-Market-Report.pdf. Acmite Market Intelligence, Ratingen, Germany

  3. Kroschwitz JI (1991) High performance polymers and composites. Wiley, The University of Michigan

    Google Scholar 

  4. May C (1988) Epoxy resins: chemistry and technology, 2nd edn. Marcel Derker Inc, New York

    Google Scholar 

  5. Oyanguren PA, Williams RJJ (1992) Analysis of the epoxidation of bisphenol A and phenolic novolacs with epichlorohydrin. Polymer (Guildf) 33:2376–2381

    Article  CAS  Google Scholar 

  6. Medjitov DR, Shode LG, Tseitlin GM (1998) Composition of condensation products of bisphenol-A and epichlorohydrin. Polym Bull 40:509–516. doi:10.1007/s002890050284

    Article  CAS  Google Scholar 

  7. Krol P, Krol B, Dziwinski E (2003) Influence of the synthesis conditions on the properties of low-molecular weight Epoxy resin. Polimery 48:546–556

    Google Scholar 

  8. Bhatnagar MS (1996) Epoxy Resin (overview). Polym Mater Encycl (CRC Press)

    Google Scholar 

  9. Chanda M, Roy SK (2006) Plastics technology handbook, 4th edn. CRC Press, Boca Raton 3:2233–2238

    Google Scholar 

  10. Hamerton I (1996) Recent developments in epoxy resins. RAPRA Technology Ltd

    Google Scholar 

  11. Castan P (1990) Curing agents for Epoxy resin. Three Bond Tech News 1–10

    Google Scholar 

  12. Bianchini G (1996) Waterborne and solvent based epoxide and their end user applications. SITA Technology, Chichester

    Google Scholar 

  13. Ferdosian F, Ebrahimi M, Jannesari A (2013) Curing kinetics of solid epoxy/DDM/nanoclay: Isoconversional models versus fitting model. Thermochim Acta 568:67–73. doi:10.1016/j.tca.2013.06.001

    Article  CAS  Google Scholar 

  14. Abdul Khalil HPS, Marliana MM, Issam AM, Bakare IO (2011) Exploring isolated lignin material from oil palm biomass waste in green composites. Mater Des 32:2604–2610

    Article  CAS  Google Scholar 

  15. Hirose S, Hatakeyama T, Hatakeyama H (2012) Novel epoxy resins derived from biomass components. Procedia Chem 4:26–33. doi:10.1016/j.proche.2012.06.004

    Article  CAS  Google Scholar 

  16. Kong X, Xu Z, Guan L, Di M (2014) Study on polyblending epoxy resin adhesive with lignin I-curing temperature. Int J Adhes Adhes 48:75–79

    Article  CAS  Google Scholar 

  17. Pascault JP, Williams RJJ (2010) General concepts about epoxy polymers. In: Epoxy Polymers: New Materials and Innovation. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1–12

    Google Scholar 

  18. Wei N, Via BK, Wang Y et al (2014) Liquefaction and substitution of switchgrass (Panicum virgatum) based bio-oil into epoxy resins. Ind Crops Prod 57:116–123. doi:10.1016/j.indcrop.2014.03.028

    Article  CAS  Google Scholar 

  19. Komiya G, Imai T, Happoya A et al (2013) Effects of lignin derivatives on cross-link density and dielectric properties in the epoxy-based insulating materials for printed circuit boards. IEEE Trans Compon Packag Manuf Technol 3:1057–1062. doi:10.1109/TCPMT.2013.2253836

    Article  CAS  Google Scholar 

  20. Honcoop E, McNamee W (2010) Toughening of epoxy with novel bio-based. In: American coatings conference, NC, pp 24–30

    Google Scholar 

  21. Koike T (2012) Progress in development of epoxy resin systems based on wood biomass in Japan. Polym Eng Sci 52:701–717. doi:10.1002/pen

    Article  CAS  Google Scholar 

  22. Meier MAR, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36:1788. doi:10.1039/b703294c

    Article  CAS  Google Scholar 

  23. Williams GI, Wool RP (2000) Composites from natural fibers and soy oil resins. Appl Compos Mater 7:421–432

    Article  CAS  Google Scholar 

  24. Seniha Güner F, Yağcı Y, Tuncer Erciyes A (2006) Polymers from triglyceride oils. Prog Polym Sci 31:633–670. doi:10.1016/j.progpolymsci.2006.07.001

    Article  Google Scholar 

  25. Raquez J-M, Deléglise M, Lacrampe M-F, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci 35:487–509. doi:10.1016/j.progpolymsci.2010.01.001

    Article  CAS  Google Scholar 

  26. Lu J, Wool RP (2008) Additive toughening effects on new bio-based thermosetting resins from plant oils. Compos Sci Technol 68:1025–1033. doi:10.1016/j.compscitech.2007.07.009

    Article  CAS  Google Scholar 

  27. Shah MY, Ahmad S (2012) Waterborne vegetable oil epoxy coatings: preparation and characterization. Prog Org Coatings 75:248–252. doi:10.1016/j.porgcoat.2012.05.001

    Article  CAS  Google Scholar 

  28. Alpha C, Supagro M, Inge E (2011) Synthesis and properties of biobased epoxy resins. Part 1. Glycidylation of flavonoids by epichlorohydrin. J Polym Sci Part A Polym Chem 49:2261–2270. doi:10.1002/POLA

    Article  Google Scholar 

  29. Benyahya S, Aouf C, Caillol S et al (2014) Functionalized green tea tannins as phenolic prepolymers for bio-based epoxy resins. Ind Crops Prod 53:296–307. doi:10.1016/j.indcrop.2013.12.045

    Article  CAS  Google Scholar 

  30. Aouf C, Benyahya S, Esnouf A et al (2014) Tara tannins as phenolic precursors of thermosetting epoxy resins. Eur Polym J 55:186–198. doi:10.1016/j.eurpolymj.2014.03.034

    Article  CAS  Google Scholar 

  31. Liu XQ, Huang W, Jiang YH et al (2012) Preparation of a bio-based epoxy with comparable properties to those of petroleum-based counterparts. Express Polym Lett 6:293–298. doi:10.3144/expresspolymlett.2012.32

    Article  CAS  Google Scholar 

  32. Huang K, Zhang J, Li M et al (2013) Exploration of the complementary properties of biobased epoxies derived from rosin diacid and dimer fatty acid for balanced performance. Ind Crops Prod 49:497–506. doi:10.1016/j.indcrop.2013.05.024

    Article  CAS  Google Scholar 

  33. Wang H, Liu B, Liu X et al (2008) Synthesis of biobased epoxy and curing agents using rosin and the study of cure reactions. Green Chem 10:1190–1196. doi:10.1039/b803295e

    Article  CAS  Google Scholar 

  34. Kuo P-Y, Sain M, Yan N (2014) Synthesis and characterization of an extractive-based bio-epoxy resin from beetle infested Pinus contorta bark. Green Chem 16:3483–3493. doi:10.1039/c4gc00459k

    Article  CAS  Google Scholar 

  35. Kishi H, Fujita A, Miyazaki H et al (2006) Synthesis of wood-based epoxy resins and their mechanical and adhesive properties. J Appl Polym Sci 102:2285–2292. doi:10.1002/app.24433

    Article  CAS  Google Scholar 

  36. Nakamura Y, Sawada T, Kuno K, Nakamoto Y (2001) Resinification of woody lignin and its characteristics on safety and biodegradation. J Chem Eng Japan 34:1309–1312

    Article  CAS  Google Scholar 

  37. Kishi H, Fujita A (2008) Wood-based epoxy resins and the ramie fiber reinforced composites. Environ Eng Manag J 7:517–523

    CAS  Google Scholar 

  38. Hofmann K, Glasser WG (1993) Engineering plastics from lignin. 21.1 Synthesis and properties of epoxidized lignin-poly (Propylene oxide) copolymers. J Wood Chem Technol 13:73–95. doi:10.1080/02773819308020508

    Article  CAS  Google Scholar 

  39. Nonaka Y, Tomita B, Hatano Y (1997) Synthesis of lignin/epoxy resins in aqueous systems and their properties. Holzforschung 51:183–187. doi:10.1515/hfsg.1997.51.2.183

    Article  CAS  Google Scholar 

  40. Park S-J, Jin F-L, Lee J-R (2004) Effect of biodegradable epoxidized castor oil on physicochemical and mechanical properties of epoxy resins. Macromol Chem Phys 205:2048–2054. doi:10.1002/macp.200400214

    Article  CAS  Google Scholar 

  41. Czub P (2006) Application of modified natural oils as reactive diluents for epoxy resins. Macromol Symp 242:60–64. doi:10.1002/masy.200651010

    Article  CAS  Google Scholar 

  42. Jin F-L, Park S-J (2008) Impact-strength improvement of epoxy resins reinforced with a biodegradable polymer. Mater Sci Eng A 478:402–405. doi:10.1016/j.msea.2007.05.053

    Article  Google Scholar 

  43. Miyagawa H, Misra M, Drzal LT, Mohanty AK (2005) Biobased epoxy/layered silicate nanocomposites: thermophysical properties and fracture behavior evaluation. J Polym Environ 13:87–96. doi:10.1007/s10924-005-2940-1

    Article  CAS  Google Scholar 

  44. Ma S, Liu X, Jiang Y et al (2013) Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers. Green Chem 15:245–254. doi:10.1039/c2gc36715g

    Article  CAS  Google Scholar 

  45. Wang M, Leitch M, Xu CC (2009) Synthesis of phenol–formaldehyde resol resins using organosolv pine lignins. Eur Polym J 45:3380–3388

    Article  CAS  Google Scholar 

  46. Simionescu CI, Cazacu G, Macoveanu MM (1987) Lignin-epoxy resins. II Physical and chemical characterization. Cellul Chem Technol 21:525–534

    CAS  Google Scholar 

  47. Cateto CA, Barreiro MF, Rodrigues AE, Belgacem MN (2011) Kinetic study of the formation of lignin-based polyurethanes in bulk. React Funct Polym 71:863–869. doi:10.1016/j.reactfunctpolym.2011.05.007

    Article  CAS  Google Scholar 

  48. Cateto CA, Barreiro MF, Rodrigues AE (2008) Monitoring of lignin-based polyurethane synthesis by FTIR-ATR. Ind Crops Prod 27:168–174. doi:10.1016/j.indcrop.2007.07.018

    Article  CAS  Google Scholar 

  49. Bonini C, D’Auria M, Emanuele L et al (2005) Polyurethanes and polyesters from lignin. J Appl Polym Sci 98:1451–1456. doi:10.1002/app.22277

    Article  CAS  Google Scholar 

  50. Evtugin DV, Gandini A (1996) Polyesters based on oxygen-organosolv lignin. Acta Polym 47:344–350. doi:10.1002/actp.1996.010470805

    Article  CAS  Google Scholar 

  51. Pan H, Sun G, Zhao T, Wang G (2014) Thermal properties of epoxy resins crosslinked by an aminated lignin. Polym Eng Sci 1–9. doi:10.1002/pen.23960

  52. Simionescu CI, Rusan V, Macoveanu MM et al (1993) Lignin/epoxy composites. Compos Sci Technol 48:317–323

    Article  CAS  Google Scholar 

  53. Holsopple DB, Kurple WW, Kurple WM, Kurple KR (1981) Method of making epoxide-lignin resins, US Patent 4265809, 5 May 1981

    Google Scholar 

  54. Delmas G-H, Benjelloun-Mlayah B, Le Bigot Y, Delmas M (2013) BioligninTM based epoxy resins. J Appl Polym Sci 127:1863–1872. doi:10.1002/app.37921

    Article  CAS  Google Scholar 

  55. El Mansouri N-E, Yuan Q, Huang F (2011) Characterization of alkaline lignins for use in phenol-formaldehyde and epoxy resins. Bioresour Technol 6:2647–2662

    Google Scholar 

  56. Hirose S, Hatakeyama H (2000) Thermal properties of epoxy resins from lignin and lignin-related phenols. Mem Fukui Univ Technol 30:255–262

    Google Scholar 

  57. El Mansouri N-E, Yuan Q, Huang F (2011) Synthesis and characterization of kraft lignin- based epoxy resins. BioResources 6:2647–2662

    Google Scholar 

  58. Zhao B, Chen G, Liu YU et al (2001) Synthesis of lignin base epoxy resin and its characterization. J Mater Sci Lett 20:859–862

    Article  CAS  Google Scholar 

  59. Malutan T, Nicu R, Popa VI (2008) Lignin modification by epoxidation. BioResources 3:1371–1376

    Google Scholar 

  60. Engelmann G, Ganster J (2014) Bio-based epoxy resins with low molecular weight kraft lignin and pyrogallol. Holzforschung 68:435–446. doi:10.1515/hf-2013-0023

    Article  CAS  Google Scholar 

  61. Pan H, Sun G, Zhao T (2013) Synthesis and characterization of aminated lignin. Int J Biol Macromol 59:221–226. doi:10.1016/j.ijbiomac.2013.04.049

    Article  CAS  Google Scholar 

  62. Hirose S, Hatakeyama T, Hatakeyama H (2003) Synthesis and thermal properties of epoxy resins from ester-carboxylic acid derivative of alcoholysis lignin. Macromol Symp 197:157–170. doi:10.1002/masy.200350715

    Article  CAS  Google Scholar 

  63. Hirose S, Hatakeyama T, Hatakeyama H (2005) Glass transition and thermal decomposition of epoxy resins from the carboxylic acid system consisting of ester-carboxylic acid derivatives of alcoholysis lignin and ethylene glycol with various dicarboxylic acids. Thermochim Acta 431:76–80. doi:10.1016/j.tca.2005.01.043

    Article  CAS  Google Scholar 

  64. Simionescu CI, Rusan V, Turta K et al (1993) Synthesis and characterization of some iron-lignosulfonate-based lignin-epoxy resins. Cellul Chem Technol 27:627–644

    CAS  Google Scholar 

  65. Huo S-P, Wu G-M, Chen J et al (2014) Curing kinetics of lignin and cardanol based novolac epoxy resin with methyl tetrahydrophthalic anhydride. Thermochim Acta 587:18–23. doi:10.1016/j.tca.2014.03.015

    Article  CAS  Google Scholar 

  66. Ferdosian F, Yuan Z, Anderson M, Xu CC (2012) Chemically modified lignin through epoxidation and its thermal properties. J-FOR 2:11–15

    Google Scholar 

  67. Ferdosian F, Yuan Z, Anderson M, Xu CC (2014) Synthesis of lignin-based epoxy resins: optimization of reaction parameters using response surface methodology. RSC Adv 4:31745–31753. doi:10.1039/C4RA03978E

    Article  CAS  Google Scholar 

  68. Ferdosian F, Yuan Z, Anderson M, Xu CC (2015) Sustainable lignin-based epoxy resins cured with aromatic and aliphatic amine curing agents: curing kinetics and thermal properties. Thermochim Acta 618:48–55. doi:10.1016/j.tca.2015.09.012

    Article  CAS  Google Scholar 

  69. Sasaki C, Wanaka M, Takagi H et al (2013) Evaluation of epoxy resins synthesized from steam-exploded bamboo lignin. Ind Crops Prod 43:757–761. doi:10.1016/j.indcrop.2012.08.018

    Article  CAS  Google Scholar 

  70. Singh A, Yadav K, Kumar Sen A (2012) Sal (Shorea Robusta) leaves lignin epoxidation and its use in epoxy based coatings. Am J Polym Sci 2:14–18. doi:10.5923/j.ajps.20120201.03

    Article  CAS  Google Scholar 

  71. Sun G, Sun H, Liu Y et al (2007) Comparative study on the curing kinetics and mechanism of a lignin-based-epoxy/anhydride resin system. Polymer (Guildf) 48:330–337. doi:10.1016/j.polymer.2006.10.047

    Article  CAS  Google Scholar 

  72. Sun H, Sun G, Lv H et al (2007) DSC study on the effect of cure reagents on the lignin base epoxy cure reaction. J Appl Polym Sci 105:2332–2338. doi:10.1002/app.26196

    Article  CAS  Google Scholar 

  73. Panagiotis I, Karkanas I, Partridge K (2000) Cure modeling and monitoring of epoxy/amine resin systems. II. Network formation and chemoviscosity modeling. J Appl Polym Sci 77:2178–2188

    Article  Google Scholar 

  74. Brnardic I, Ivankovic M, Ivankovic H, Mencer HJ (2006) Isothermal and nonisothermal cure kinetics of an epoxy/poly(oxypropylene)diamine/octadecylammonium modified montmorillonite system. J Appl Polym Sci 100:1765–1771. doi:10.1002/app.23080

    Article  CAS  Google Scholar 

  75. Weibing X, Pingsheng H, Dazhu C (2003) Cure behavior of epoxy resin/montmorillonite/imidazole nanocomposite by dynamic torsional vibration method. Eur Polym J 39:617–625. doi:10.1016/S0014-3057(02)00270-7

    Article  Google Scholar 

  76. Chen D, He P (2004) Monitoring the curing process of epoxy resin nanocomposites based on organo-montmorillonite—a new application of resin curemeter. Compos Sci Technol 64:2501–2507. doi:10.1016/j.compscitech.2004.05.008

    Article  CAS  Google Scholar 

  77. Chen DZ, He PS, Pan LJ (2003) Cure kinetics of epoxy-based nanocomposites analyzed by Avrami theory of phase change. Polym Test 22:689–697. doi:10.1016/S0142-9418(03)00002-3

    Article  CAS  Google Scholar 

  78. Lacorte T, Lipinska M, Carrasco F, Page P (2008) Study of curing of layered silicate/trifunctional epoxy nanocomposites by means of FTIR Spectroscopy. J Appl Polym Sci 108:2107–2115. doi:10.1002/app

    Article  Google Scholar 

  79. Halley PJ, Mackay ME (1996) Chermorheology of thermosets—an overview. Polym Eng Sci 36:593–609

    Article  CAS  Google Scholar 

  80. Chen J, Hojjati M (2007) Microdielectric analysis and curing kinetics of an epoxy resin system. Polym Eng Sci 47:150–158. doi:10.1002/pen.20687

    Article  CAS  Google Scholar 

  81. Lee H, Kenny J, Mays J (2006) Dynamics in polymer—silicate nanocomposites as studied by dielectric relaxation spectroscopy and dynamic mechanical spectroscopy. Macrolecules 39:2172–2182

    Google Scholar 

  82. Yin Q, Yang W, Sun C, Di M (2012) Preparation and properties of lignin-epoxy resin composite. BioResources 7:5737–5748

    Article  Google Scholar 

  83. Liu W, Zhou R, Goh HLS et al (2014) From waste to functional additive: toughening epoxy resin with lignin. ACS Appl Mater Interfaces 6:5810–5817. doi:10.1021/am500642n

    Article  CAS  Google Scholar 

  84. Wang Q, He T, Xia P et al (1997) Cure processing modeling and cure cycle simulation of epoxy-terminated poly(phenylene ether ketone). I. DSC characterization of curing reaction. J Appl Polym Sci 66:789–797. doi:10.1002/(SICI)1097-4628(19971024)66:4<789:AID-APP19>3.0.CO;2-M

    Article  CAS  Google Scholar 

  85. Wang Q, He T, Xia P et al (1997) Cure processing modeling and cure cycle simulation of epoxy-terminated poly (phenylene ether ketone). III. Determination of the time of pressure application. J Appl Polym Sci 66:1745–1750

    Article  CAS  Google Scholar 

  86. Cai H, Li P, Sui G et al (2008) Curing kinetics study of epoxy resin/flexible amine toughness systems by dynamic and isothermal DSC. Thermochim Acta 473:101–105. doi:10.1016/j.tca.2008.04.012

    Article  CAS  Google Scholar 

  87. Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crops Prod 33:259–276

    Article  CAS  Google Scholar 

  88. Dufresne A, Thomas S, Pothan LA (2013) Biopolymer nanocomposites: processing, properties and applications. Wiley, Hoboken, New Jersey

    Google Scholar 

  89. Hu J, Xiao R, Shen D, Zhang H (2013) Structural analysis of lignin residue from black liquor and its thermal performance in thermogravimetric-Fourier transform infrared spectroscopy. Bioresour Technol 128:633–639. doi:10.1016/j.biortech.2012.10.148

    Article  CAS  Google Scholar 

  90. Benítez-Guerrero M, López-Beceiro J, Sánchez-Jiménez PE, Pascual-Cosp J (2014) Comparison of thermal behavior of natural and hot-washed sisal fibers based on their main components: cellulose, xylan and lignin. TG-FTIR analysis of volatile products. Thermochim Acta 581:70–86. doi:10.1016/j.tca.2014.02.013

    Article  Google Scholar 

  91. Zhang M, Resende FLP, Moutsoglou A, Raynie DE (2012) Pyrolysis of lignin extracted from prairie cordgrass, aspen, and Kraft lignin by Py-GC/MS and TGA/FTIR. J Anal Appl Pyrolysis 98:65–71. doi:10.1016/j.jaap.2012.05.009

    Article  CAS  Google Scholar 

  92. Sahoo S, Seydibeyoğlu MÖ, Mohanty AK, Misra M (2011) Characterization of industrial lignins for their utilization in future value added applications. Biomass Bioenerg 35:4230–4237. doi:10.1016/j.biombioe.2011.07.009

    Article  CAS  Google Scholar 

  93. Czégény Z, Jakab E, Blazsó M (2013) Pyrolysis of wood, cellulose, lignin–brominated epoxy oligomer flame retardant mixtures. J Anal Appl Pyrolysis 103:52–59. doi:10.1016/j.jaap.2012.11.002

    Article  Google Scholar 

  94. Brebu M, Vasile C (2010) Thermal degradation of lignin—a review. Cellul Chem Technol 44:353–363

    CAS  Google Scholar 

  95. Gašparoviè L, Labovský J, Markoš J (2012) Calculation of kinetic parameters of the thermal decomposition of wood by Distributed Activation Energy Model (DAEM). Chem Biochem Eng Q 26:45–53

    Google Scholar 

  96. Ma Z, Chen D, Gu J et al (2015) Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods. Energy Convers Manag 89:251–259. doi:10.1016/j.enconman.2014.09.074

    Article  CAS  Google Scholar 

  97. Beis SH, Mukkamala S, Hill N et al (2010) Fast pyrolysis of lignins. BioResources 5:1408–1424

    CAS  Google Scholar 

  98. Petreus O, Cazacu G, Vasile C (2008) Spectroscopic and thermal characterization of a new phosphorus containing lignin-epoxy resin. In: COST E41 Meet. Åbo, Finland, pp 71–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunbao Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Xu, C., Ferdosian, F. (2017). Lignin-Based Epoxy Resins. In: Conversion of Lignin into Bio-Based Chemicals and Materials. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54959-9_7

Download citation

Publish with us

Policies and ethics