Skip to main content

Data Base and Model Calibration

  • Chapter
  • First Online:
Book cover Applied General Equilibrium

Abstract

In Chaps. 3, 4 and 5 we have developed a simple but increasingly complex general equilibrium model. Starting with the standard textbook version of a private, closed economy we showed how the different pieces of the model interact with each other to give rise to a system of equations that capture and describe market equilibrium. The addition of the government and the external sector, as well as the modification of the labor market to allow for unemployment, provided a more realistic picture of an actual economy and laid the grounds for the study of various policy issues. In each of the examples used, however, the specification of the model parameters was arbitrary, except for a choice of units that yielded convenient solution values for prices and output levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Bacharach, M. (1965). Estimating non-negative matrices from marginal data. International Economic Review, 6(3), 294–310.

    Article  Google Scholar 

  • Bacharach, M. (1970). Biproportional matrices and input–output change. London: Cambridge University Press.

    Google Scholar 

  • Cardenete, M. A., & Sancho, F. (2004). Sensitivity of simulation results to competing SAM updates. The Review of Regional Studies, 34(1), 37–56.

    Google Scholar 

  • Chenery, H. B., & Watanabe, T. (1958). International comparisons of the structure of production. Econometrica, 26(4), 487–521.

    Article  Google Scholar 

  • Dawkins, C., Srinivasan, T. N., & Whalley, J. (2001). Calibration, Chap. 58. In J. Heckman & E. E. Leamer (Eds.), Handbook of econometrics (Vol. 5). Amsterdam: North-Holland.

    Google Scholar 

  • Harrison, G., Jones, R., Kimbell, L., & Wiggle, R. (1993). How robust is applied general equilibrium analysis? Journal of Policy Modeling, 15(1), 99–115.

    Article  Google Scholar 

  • Harrison, G., & Vinod, H. D. (1992). The sensitivity analysis of applied general equilibrium. The Review of Economics and Statistics, 74(2), 357–362.

    Article  Google Scholar 

  • Kehoe, T. J., Polo, C., & Sancho, F. (1995). An evaluation of the performance of an applied general equilibrium model of the Spanish economy. Economic Theory, 6(1), 115–141.

    Article  Google Scholar 

  • Keuning, S., & de Ruitjer, W. (1988). Guidelines to the construction of a social accounting matrix. Review of Income and Wealth, 34(1), 71–100.

    Article  Google Scholar 

  • Le Masné, P. (1990). Le system productif français face a ses voisins europeens. In A. Archanbauld & O. Arkhipof (Eds.), La comptabilité national face au défi international. Paris: Economica.

    Google Scholar 

  • Lima, M. C., Cardenete, M. A., & Sancho, F. (2016). Validating policy-induced economic change using sequential general equilibrium SAMs. Journal of Forecasting. doi:10.1002/for.2424.

  • Lucena, A. E, & Serrano, M. 2006. Building a social accounting matrix within the ESA95 framework: Obtaining a dataset for applied general equilibrium modelling. University of Barcelona. Digital Research Repository. http://hdl.handle.net/2445/11756

  • Mansur, A., & Whalley, J. (1984). Numerical specification of applied general equilibrium models: Estimation, calibration and data. In H. Scarf & J. Shoven (Eds.), Applied general equilibrium analysis. New York: Cambridge University Press.

    Google Scholar 

  • McDougall, R. (1999). Entropy theory and RAS are friends (GTAP WP 6). Purdue University.

    Google Scholar 

  • Miller, R., & Blair, P. (2009). Input-output analysis: foundations and extensions (2nd ed.). New York: Cambridge University Press.

    Book  Google Scholar 

  • Pyatt, G. (1988). A SAM approach to modeling. Journal of Policy Modeling, 10, 327–352.

    Article  Google Scholar 

  • Reiner, K., & Roland-Holst, D. W. (1992). A detailed social accounting matrix for the United States. Economic Systems Research, 4(2), 173–187.

    Article  Google Scholar 

  • Robinson, S., Cattaneo, A., & El-Said, M. (2001). Updating and estimating a social accounting matrix using cross-entropy methods. Economic Systems Research, 13(1), 47–64.

    Article  Google Scholar 

  • Salton, G., & McGill, M. J. (1983). Introduction to modern information retrieval. New York: McGraw-Hill.

    Google Scholar 

  • Sancho, F. (2009). Calibration of CES functions for ‘real-world’ multisectoral modeling. Economic Systems Research, 21(1), 45–58.

    Article  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423.

    Article  Google Scholar 

  • Stone, R., & Brown, A. (1962). A computable model of economic growth. London: Chapman & Hall.

    Google Scholar 

  • Stone, R., & Corbit, J. D. (1997). The accounts of society. The American Economic Review, 87(6), 17–29.

    Google Scholar 

  • Thorbecke, E. (2000). The use of social accounting matrices in modeling. Paper presented at the 26th General Conference of the International Association for Research in Income and Wealth, Cracow.

    Google Scholar 

  • Waters, E. C., Holland, D. W., & Weber, B. A. (1997). Economic impacts of a property tax limitation: A computable general equilibrium analysis of Oregon’s measure 5. Land Economics, 73, 72–89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix 1

Table 6.12 An empirical social accounting matrix

Appendix 2: GAMS Code for the Updating of a Social Accounting Matrix

$TITLE SAM UPDATING: CHAPTER 6 Tables 6.5,6.6,6.7 OPTION NLP=CONOPT; SET I accounts in SAM /1*6/; ALIAS (J,I); TABLE A0(I,J) prior SAM 1 2 3 4 5 6 1 20 50 0 0 15 15 2 30 25 0 0 35 10 3 40 10 0 0 0 0 4 10 15 0 0 0 0 5 0 0 30 20 0 0 6 0 0 20 5 0 0; PARAMETER Z1(I) new marginals /1 104.99 2 105.23 3 62.00 4 32.61 5 65.29 6 29.32 /; VARIABLES D Minimand X(I,J) Estimated SAM cells SICOS(I) Cosine similarity; D.L = 0; X.L(I,J) = A0(I,J); X.LO(I,J) = 0; SICOS.L(I) = 0.5; SICOS.LO(J)=0; SICOS.UP(J) = 1; EQUATIONS GOAL_E Objective function: Entropy GOAL_L Objective function: Least squares GOAL_C Objective function: Cosine similarity ROWSUM(I) Row sum restrictions COLSUM(I) Column sum restrictions ZERO(I,J) Zero structure SIMCOS(I) Column similarity; $ONTEXT Three possible objective functions according to three closeness philosophies: entropy, least squares and similarity. The user can select which of the corresponding three models will be solved. Solution data is saved in a MS Excel sheet $OFFTEXT GOAL_E.. D =E= SUM((I,J)$A0(I,J), X(I,J)*LOG(X(I,J)/A0(I,J))); GOAL_L.. D =E= SUM((I,J)$A0(I,J), SQR(X(I,J)-A0(I,J))) ; GOAL_C.. D =E= -SUM(J, SICOS(J)); ROWSUM(I).. SUM(J, X(I,J)) =E= Z1(I); COLSUM(I).. SUM(J, X(J,I)) =E= Z1(I); ZERO(I,J).. X(I,J)$(A0(I,J) EQ 0) =E= 0; SIMCOS(I).. SICOS(I) =E= SUM(J$A0(J,I),X(J,I)*A0(J,I)) / SQRT(SUM(J$A0(J,I),SQR(X(J,I)))*SUM(J$A0(J,I),SQR(A0(J,I)))); MODEL ENTROPY /GOAL_E, ROWSUM, COLSUM, ZERO/; MODEL LEASTSQUARES /GOAL_L, ROWSUM, COLSUM, ZERO/; MODEL COSINE /GOAL_C, ROWSUM, COLSUM, ZERO, SIMCOS/; PARAMETER SAM(I,J) to upload updating result; SOLVE ENTROPY MINIMIZING D USING NLP; SAM(I,J) = X.L(I,J); $LIBINCLUDE XLDUMP SAM UPDATES.XLS ENTROPY SOLVE LEASTSQUARES MINIMIZING D USING NLP; SAM(I,J) = X.L(I,J); $LIBINCLUDE XLDUMP SAM UPDATES.XLS LEASTSQUARES SOLVE COSINE MINIMIZING D USING NLP; SAM(I,J) = X.L(I,J); $LIBINCLUDE XLDUMP SAM UPDATES.XLS SIMILARITY

Appendix 3: Proximity Indicators

Consider two square matrices \( {\mathbf{A}}^1=\left({a}_{ij}^1\right) \) and \( {\widehat{\mathbf{A}}}^1=\left({\widehat{a}}_{ij}^1\right) \) such that for all j = 1 , 2 ,  …  , n we have:

$$ \sum_{i=1}^n{a}_{ij}^1=\sum_{i=1}^n{a}_{ji}^1=\sum_{i=1}^n{\widehat{a}}_{ij}^1=\sum_{i=1}^n{\widehat{a}}_{ji}^1={z}_j $$

Define:

$$ {b}_{ij}^1={a}_{ij}^1/{z}_j,{\widehat{b}}_{ij}^1={\widehat{a}}_{ij}^1/{z}_j,{\omega}_j={z}_j/{\sum}_i{z}_i,\overline{a}=\left(1/{n}^2\right)\cdot {\sum}_{i,j}{a}_{ij}^1\ \mathrm{and}\ \widehat{\overline{a}}=\left(1/{n}^2\right)\cdot {\sum}_{i,j}{\widehat{a}}_{ij}^1. $$

By the way, notice that in our example we have in fact that \( \overline{a}=\widehat{\overline{a}} \). Then:

Le Masné (1990) proximity index with LM ∈ [0, 1]:

$$ LM=\sum_{j=1}^n{\omega}_j\cdot \left(1-0.5\cdot \sum_{i=1}^n\left|{b}_{ij}^1-{\widehat{b}}_{ij}^1\right|\right) $$

Chenery and Watanabe (1958) proximity index with CW ∈ [0, 1]:

$$ CW=\sum_{j=1}^n{\omega}_j\cdot \frac{\sum_{i=1}^n\left|{a}_{ij}^1-{\widehat{a}}_{ij}^1\right|}{0.5\cdot \sum_{i=1}^n\left({a}_{ij}^1+{\widehat{a}}_{ij}^1\right)} $$

Pearson correlation with R 2 ∈ [0, 1]:

$$ R=\frac{\sum_{i=1}^n\sum_{j=1}^n\left({a}_{ij}^1-\overline{a}\right)\cdot \left({\widehat{a}}_{ij}^1-\widehat{\overline{a}}\right)}{\sqrt{\sum_{i=1}^n\sum_{j=1}^n{\left({a}_{ij}^1-\overline{a}\right)}^2\cdot \sum_{i=1}^n\sum_{j=1}^n{\left({\widehat{a}}_{ij}^1-\widehat{\overline{a}}\right)}^2}} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Cardenete, M.A., Guerra, AI., Sancho, F. (2017). Data Base and Model Calibration. In: Applied General Equilibrium. Springer Texts in Business and Economics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54893-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54893-6_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54892-9

  • Online ISBN: 978-3-662-54893-6

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics