Skip to main content

Abstract

Shear bands are common phenomena reported in various metal-working processes, such as forming, forging, hot rolling, cold rolling and high-speed cutting. In the micro-cutting process, there is strong experimental evidence that the fluctuation in cutting force is related to the variation of chip thickness and is related to the shear plane angle of the metals being cut. This chapter investigates the mechanism of elastic strain-induced shear bands and regularly space shear bands with a generalised model for shear angle prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Black, J. T. (1971). On the fundamental mechanism of large strain plastic deformation. Journal of Engineering for Industry, 507.

    Google Scholar 

  • Budak, E., & Ozlu, E. (2008). Development of a thermomechanical cutting process model for machining process simulations. CIRP Annals-Manufacturing Technology, 57, 97–100.

    Article  Google Scholar 

  • Burns, T. J., & Davis, M. A. (2002). On repeated adiabatic shear band formation during high-speed machining. International Journal of Plasticity, 18, 487–506.

    Article  MATH  Google Scholar 

  • Calamaz, M., Coupard, D., Nouari, M., & Girot, F. (2011). Numerical analysis of chip formation and shear localisation processes in machining the Ti–6Al–4V titanium alloy. International Journal of Advanced Manufacturing Technology, 52(9–12), 887–895.

    Article  Google Scholar 

  • Davim, J. P., & Maranhão, C. (2009). A study of plastic strain and plastic strain rate in machining of steel AISI 1045 using FEM analysis. Materials and Design, 30, 160–165.

    Article  Google Scholar 

  • Duan, C., & Wang, M. (2005). Some metallurgical aspects of chips formed in high speed machining of high strength low alloy steel. Scripta Materialia, 52, 1001–1004.

    Article  Google Scholar 

  • Fang, N. (2003a). Slip-line modeling of machining with a rounded-edge tool—Part I: New model and theory. Journal of the Mechanics and Physics of Solids, 51, 715–742.

    Article  MATH  Google Scholar 

  • Fang, N. (2003b). Slip-line modeling of machining with a rounded-edge tool—Part II: Analysis of the size effect and the shear strain-rate. Journal of the Mechanics and Physics of Solids, 51, 743–762.

    Article  MATH  Google Scholar 

  • Guduru, P. R., Ravichandran, G., & Rosakis, A. J. (2001). Observation of transient high temperature vertical microstructures in solids during adiabatic shear banding. Physical Review E, 64, Paper No. 036128.

    Google Scholar 

  • He, N., Lee, T. C., Lau, W. S., & Chan, S. K. (2002). Assessment of deformation of a shear localized chip in high speed machining. Journal of Materials Processing Technology, 129, 101–104.

    Article  Google Scholar 

  • Jiang, M. Q., & Dai, L. H. (2009). Formation mechanism of lamellar chips during machining of bulk metallic glass. Acta Materialia, 57, 2730–2738.

    Article  Google Scholar 

  • Johnson, G. R., & Cook, W. H. (1983). A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures (pp. 541–547). Hague: Seventh International Symposium on Ballistics.

    Google Scholar 

  • Johnson, G. R., & Cook, W. H. (1985). Fracture characteristics of three metals subject to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21, 31–48.

    Article  Google Scholar 

  • Lee, W.B., & Duggan, B.J. (1988). Effects of grain size on rolling and annealing textures in 82–92% cold rolled α-brass. Textures and Microstructures, 8, 155–172.

    Google Scholar 

  • Lee, E. H., & Shaffer, B. W. (1951). The theory of plasticity applied to a problem of machining. Journal of Applied Mechanics, 73, 405.

    Google Scholar 

  • Lee, W. B. (2005). A personal reflection of mesoplasticity and its applications. Journal of Materials Processing Technology, 167, 151–160.

    Article  Google Scholar 

  • Lee, W. B., To, S., & Chan, C. Y. (1999). Deformation band formation in metal cutting. Scripta Materialia, 40, 439–443.

    Article  Google Scholar 

  • Lee, W. B., To, S., Sze, Y. K., & Cheung, C. F. (2003). Effect of material anisotropy on shear angle prediction in metal cutting—A mesoplasticity approach. International Journal of Mechanical Science, 45, 1739–1749.

    Article  MATH  Google Scholar 

  • Medyanik, S. N., Liu, W. K., & Li, S. (2007). On criteria for dynamic adiabatic shear band propagation. Journal of the Mechanics and Physics of Solids, 55, 1439–1461.

    Article  MathSciNet  MATH  Google Scholar 

  • Merchant, M. E. (1945a). Mechanics of the metal cutting process. I: Orthogonal cutting and A type 2 chip. Journal of Applied Physics, 16, 267.

    Article  Google Scholar 

  • Merchant, M. E. (1945b). Mechanics of the metal cutting process. II, plasticity conditions in orthogonal cutting. Journal of Applied Physics, 16, 318.

    Article  Google Scholar 

  • Molinari, A., & Moufki, A. (2008). The Merchant’s model of orthogonal cutting revisited: A new insight into the modeling of chip formation. International Journal of Mechanical Sciences, 50, 124–131.

    Article  MATH  Google Scholar 

  • Recht, R. F. (1985). A dynamic analysis of high speed machining. ASME Journal of Engineering for Industry, 107, 309–315.

    Article  Google Scholar 

  • Recht, R. F. (1964). Catastrophic thermoplastic shear. Journal of Applied Mechanics, 31, 189–193.

    Article  Google Scholar 

  • Rhim, S.-H., & Oh, S.-I. (2006). Prediction of serrated chip formation in metal cutting process with new flow stress model for AISI 1045 steel. Journal of Materials Processing Technology, 171, 417–422.

    Article  Google Scholar 

  • Rule, W. (1997). A numerical scheme for extracting strength model coefficients from Taylor test data. International Journal of Impact Engineering, 19, 797–810.

    Article  Google Scholar 

  • Saito, T. (1978). Machining of optics: An introduction. Applied Optics, 14, 1773–1776.

    Article  Google Scholar 

  • Shaw, M. C. (2005). Metal cutting principle. New York: Oxford University Press.

    Google Scholar 

  • Simoneau, A., Nge, E., & Elbestawi, M. A. (2006). Chip formation during microscale cutting of a medium carbon steel. International Journal of Machine Tools and Manufacture, 46, 467–481.

    Article  Google Scholar 

  • Stabler, G. V. (1951). The fundamental geometry of cutting tools. Proceedings of the Institution of Mechanical Engineers, 165, 14–21.

    Article  Google Scholar 

  • Sze, Y. K. (2006). The effect of preferred orientation in the single point diamond turning of polycrystalline materials (M. Phil. Thesis). The Hong Kong Polytechnic University.

    Google Scholar 

  • Teng, X., Wierzbicki, T., & Couque, H. (2007). On the transition from adiabatic shear banding to fracture. Mechanics of Materials, 39, 107–125.

    Article  Google Scholar 

  • Trent, E. M., & Wright, P. K. (2000). Metal cutting. Butterworth-Heinemann.

    Google Scholar 

  • Wang, H., To, S., Chan, C. Y., Cheung, C. F., & Lee, W. B. (2010a). A study of regularly spaced shear bands and morphology of serrated chip formation in microcutting process. Scripta Materialia, 63, 227–230.

    Article  Google Scholar 

  • Wang, H., To, S., Chan, C. Y., Cheung, C. F., & Lee, W. B. (2010b). A theoretical and experimental investigation of the tool-tip vibration and its influence upon surface generation in single-point diamond turning. International Journal of Machine Tools and Manufacture, 50, 241–252.

    Article  Google Scholar 

  • Wang, H., To, S., Chan, C. Y., Cheung, C. F., & Lee, W. B. (2010c). Elastic strain induced shear bands in the microcutting process. International Journal of Machine Tools and Manufacture, 50, 9–18.

    Article  Google Scholar 

  • Zong, W. J., Li, D., Cheng, K., Sun, T., & Liang, Y. C. (2007). Finite element optimization of diamond tool geometry and cutting-process parameters based on surface residual stresses. International Journal of Advanced Manufacturing Technology, 32, 666–674.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandy Suet To .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

To, S.S., Wang, V.H., Lee, W.B. (2018). Shear Bands in Ultra-Precision Diamond Turning. In: Materials Characterisation and Mechanism of Micro-Cutting in Ultra-Precision Diamond Turning. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54823-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54823-3_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54821-9

  • Online ISBN: 978-3-662-54823-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics