Skip to main content

Abstract

The machinability of metals and alloys is well known for being affected by the cutting conditions, cutting tools and material properties. A very high-quality surface finish can be obtained by the use of advanced machine tools based on single point diamond turning (SPDT). However, no matter how accurate the machining system is, the limit of performance is determined by the tool/workpiece interaction during the chip removal process at the micro- and nano-scales. In particular, the dimensional accuracy and stability of the machined surface depend on the metallurgical properties of the surface before and after machining, such as the plastic deformation, microstructural changes, phase transformation. This chapter introduces the electropulsing treatment (EPT), as an alternative to traditional thermal and mechanical processes, to enhance the machinability of the difficult-to-machine materials for ultraprecision machining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Campbell, J., & Conrad, H. (1994). Influence of electric current on the quench aging of a low carbon steel. Scripta Metallurgica et Materialia, 31, 69–74.

    Article  Google Scholar 

  • Cao, W. D., Lu, X. P., Sprecher, A. F., & Conrad, H. (1990). Increased hardenability of steel by an external electric field. Materials Letters, 9, 193–197.

    Article  Google Scholar 

  • Conrad, H. (2000). Effects of electric current on solid state phase transformations in metals. Materials Science and Engineering A, 287, 227–273.

    Google Scholar 

  • Conrad, H., Cao, W. D., Lu, S. P., & Sprecher, A. F. (1989a). Effect of electric field on super-plasticity of 7475 Al. Scripta Metallurgica, 23, 821–824.

    Article  Google Scholar 

  • Conrad, H., Cao, W. D., Lu, S. P., & Sprecher, A. F. (1991). Effect of electric field on cavitation in superplastic aluminum alloy 7475. Materials Science and Engineering A, 138, 247–258.

    Article  Google Scholar 

  • Conrad, H., Guo, Z., & Sprecher, A. F. (1989b). Effect of an electric field on recovery and recrystallization of Al and Cu. Scripta Metallurgica, 23, 697–702.

    Article  Google Scholar 

  • Conrad, H., Karam, N., & Mannan, S. (1983). Effect of electric current pulses in the recrystallization of copper. Scripta Metallurgica, 17(3), 411.

    Article  Google Scholar 

  • Conrad, H., Karam, N., & Mannan, S. (1984). Effect of prior cold work on the influence of electric current pulses on the recrystallization of copper. Scripta Metallurgica, 18, 275–280.

    Article  Google Scholar 

  • Cotterell, M., & Byrne, G. (2008). Dynamics of chip formation during straight cutting of titanium alloy Ti-6Al-4 V. CIRP Annals-Manufacturing Technology, 57, 93–96.

    Article  Google Scholar 

  • Jiang, M. Q., & Dai, L. H. (2009). Formation mechanism of lamellar chips during machining of bulk metallic glass. Acta Materialia, 57, 2730–2738.

    Article  Google Scholar 

  • Lloyd, J. R. (1999) Electromigration in integrated circuit conductors. Journal of Physics D: Applied Physics 32(17), R109–R118

    Google Scholar 

  • Li, S., & Conrad, H. (1998). Electric field strengthening during superplastic creep of Zn–5wt% Al: a negative electroplastic effect. Scripta Materialia, 39, 847–851.

    Article  Google Scholar 

  • Livesey, S. J., Duan, X., Priestner, R., & Collins, J. (2001). An electroplastic effect in 31/4% silicon steel. Scripta Materialia, 44, 803–809.

    Article  Google Scholar 

  • Mishra, R.S., Mukherjee, A. K. (2000). Electric pulse assisted rapid consolidation of ultrafine grained alumina matrix composites. Materials Science and Engineering: A 287(2), 178–182

    Google Scholar 

  • Mizubayashi, H., Kameyama, N., Hao, T. & Tanimoto, H. (2001), Crystallization under electropulsing suggesting a resonant collective motion of many atoms and modification of thermodynamic parameters in amorphous alloys, Phys. Rev. B, 64, 054201.

    Google Scholar 

  • Okazaki, K., Kagawa, M. & Aono, Y. (1967). An analysis of thermally activated flow in an Fe-0.056 at.-% Ti alloy using stress relaxation, Z. Metallkde, 67, 47–56.

    Google Scholar 

  • Qin, R., Su, S. X., Guo, J. D., He, G. H., & Zhou, B. L. (1998). Suspension effect of nanocrystalline grain growth under electropulsing. Nanostructured Materials, 10, 71–76.

    Article  Google Scholar 

  • Qin, R., & Su, S. (2002). Thermodynamics of crack healing under electropulsing. Journal of materials research, 17(08), 2048–2052.

    Google Scholar 

  • Tang, G., Zheng, M., Zhu, Y., Zhang, J., Fang W. & Li, Q. (1998). Iron and Steel, 33(9), 35–37 (in Chinese).

    Google Scholar 

  • Tang, G., & Zhang, J. (2003). The engineering application of the electroplastic effect in the cold-drawing of stainless steel wire. Journal of Materials Processing Technology, 137, 96–99.

    Article  Google Scholar 

  • Tang, G., Zhang, J., Zheng, M., Zhang, J., Fang, W., & Li, Q. (2000). Experimental study of electroplastic effect on stainless steel wire 304L. Materials Science and Engineering A, 281, 263–267.

    Article  Google Scholar 

  • Teng, G., Chao, Y., Dong, L., Geng, Y., & Lai, Z. (1996). Features of nanocrystallization of metallic glass fe 78b 13si 9 induced by high-current-density electropulsing. Japanese journal of applied physics, 35(10R), 5320–5325.

    Google Scholar 

  • To, S., Zhu, Y. H., Lee, W. B., Liu, X. M., Jiang, Y. B., & Tang, G. Y. (2009). Effect of current density on electropulsing induced phase transformations in a Zn-Al based alloy. Applied Physics A, 96(4), 939–944.

    Article  Google Scholar 

  • Troitskii, O. A., & Likhtman, V. I. (1963, January). The anisotropy of the action of electron-and $ gamma $-radiation on the deformation process of brittle zinc single crystals. In Dokl. Akad. Nauk SSR (Vol. 148). , USSR: Inst. of Physics and Chemistry, Academy of Sciences

    Google Scholar 

  • Troitskii, O.A., & Savenko, V.S. (1986). Multi-stage electroplastic drawing of copper wire. Russian Metallurgy, 5, 96–98

    Google Scholar 

  • Xiao, S. H., Guo, J. D., & Li, S. X. (2002). The effect of electropulsing on dislocation structures in [233] coplanar double-slip-oriented fatigued copper single crystals. Philosophical Magazine Letters, 82, 617–622.

    Article  Google Scholar 

  • Yang, D., & Conrad, H. (2001). Exploratory study into the effects of an electric field and of high current density electropulsing on the plastic deformation of TiAl. Intermetallics, 9, 943–947.

    Article  Google Scholar 

  • Yao, K. F., Wang, J., Zheng, M., Yu, P., & Zhang, H. (2001a). A research on electroplastic effects in wire-drawing process of an austenitic stainless steel. Scripta Materialia, 45(5), 533–539.

    Google Scholar 

  • Yao, K., Yu, P., & Wang, J. (2001b). Effects of high-density current pulses on work hardening behaviors of austenite stainless steelin wire-drawing deformation. Acta Metallurgica Sinica (English Letters), 14(5), 341–346.

    Google Scholar 

  • Zhou, Y., Guo, J., Gao, M., & He, G. (2004). Crack healing in a steel by using electropulsing technique. Material Letters, 58, 1732–1736.

    Article  Google Scholar 

  • Zhou, Y., Qiao, D., He, G., & Guo, J. (2003). Improvement of mechanical properties in a saw blade by electropulsing treatment. Material Letters, 57, 1566–1570.

    Article  Google Scholar 

  • Zhu, Y. H., To, S., Lee, W. B., Liu, X. M., Jiang, Y. B., & Tang, G. Y. (2009a). Effects of dynamic electropulsing on microstructure and elongation of a Zn–Al alloy. Materials Science and Engineering A, 501(1–2), 125–132.

    Article  Google Scholar 

  • Zhu, Y. H., To, S., Lee, W. B., Liu, X. M., Jiang, Y. B., & Tang, G. Y. (2009b). Electropulsing induced phase transformation in a Zn-Al based alloy. Journal of Material Research, 24(8), 2661–2669.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandy Suet To .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

To, S.S., Wang, V.H., Lee, W.B. (2018). Material Electropulsing Treatment and Characterisation of Machinability. In: Materials Characterisation and Mechanism of Micro-Cutting in Ultra-Precision Diamond Turning. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54823-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54823-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54821-9

  • Online ISBN: 978-3-662-54823-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics