Skip to main content

Abstract

This chapter thoroughly reviews the modelling and simulation of ultra-precision machining. The analytical and numerical methods and their applications are summarised, including the Slip-line Field Modelling, Molecular Dynamics Simulation, Quasicontinuum Method, Meshfree Method, Discrete Element Method, Finite Element Method, etc. The dedicated models for chip morphology and shear band theory are further explained in details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya, A., & Bassani, J. L. (2000). Lattice incompatibility and a gradient theory of crystal plasticity. Journal of the Mechanics and Physics of Solids, 48, 1565.

    Article  MathSciNet  MATH  Google Scholar 

  • Arcona, C. (1996), Tool force, chip formation and surface finish in diamond turning. PhD thesis, North Carolina State University, p. 1.

    Google Scholar 

  • Bailey, J. A., & Boothroyd, G. (1968). Critical review of some previous work on the mechanics of the metal-cutting process. Journal of Engineering for Industry, 90, 54.

    Article  Google Scholar 

  • Black, J. T. (1971). On the fundamental mechanism of large strain plastic deformation. Journal of Engineering for Industry.

    Google Scholar 

  • Boothroyd, G., & Knight, W. A. (1989). Fundamentals of machining and machine tools. New York: Marcel Dekker Inc.

    Google Scholar 

  • Burns, T. J., & Davis, M. A. (2002). On repeated adiabatic shear band formation during high-speed machining. International Journal of Plasticity, 18, 487–506.

    Article  MATH  Google Scholar 

  • Calamaz, M., Coupard, D., & Girot, F. (2008). A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4V. International Journal of Machine Tools and Manufacture, 48, 275–288.

    Article  Google Scholar 

  • Calamaz, M., Limido, J., Nouari, M., Espinosa, C., Coupard, D., Salaün, M., et al. (2009). Toward a better understanding of tool wear effect through a comparison between experiments and SPH numerical modeling of machining hard materials. International Journal of Refractory Metals & Hard Materials, 27, 595–604.

    Article  Google Scholar 

  • Carroll, J. T., & Strenkowshi, J. S. (1988). Finite element models of orthogonal cutting with application to single point diamond turning. International Journal of Mechanical Science, 30, 899.

    Article  Google Scholar 

  • Ceretti, E., Fallbohmer, P., Wu, W. T., & Altan, T. (1996). Application of 2-D FEM to chip formation in orthogonal cutting. Journal of Materials Processing Technology, 59, 169.

    Article  Google Scholar 

  • Chandrashekharan, H., & Thuvander, A. (1998). Tool stresses and temperature in machining. In CIRP International Workshop on Modeling of Machining Operations, pp. 2B/7-1.

    Google Scholar 

  • Chen, Y. P., Lee, W. B., To, S., & Wang, H. (2008). Finite element modeling of micro-cutting processes from crystal plasticity. International Journal of Modern Physics B, 22(31 & 32), 5943–5948.

    Article  Google Scholar 

  • Chuzhoy, L., DeVor, R. E., Kappor, S. G., & Bammann, D. J. (2001). Microstructure-level modeling of ductile iron machining. In Proceedings of ASME Manufacturing Engineering Division (MED-Vol. 12), ASME International Mechanical Engineering Congress and Exposition, NY, p. 125.

    Google Scholar 

  • Cundall, P. A. (1971). A computer model for simulation progressive, large-scale movements in blocky rock systems. In Symposium of International Society of Rock Mechanics, Nancy France 2, No. 2, pp. 11–19.

    Google Scholar 

  • Duan, C., & Wang, M. (2005). Some metallurgical aspects of chips formed in high speed machining of high strength low alloy steel. Scripta Materialia, 52, 1001–1004.

    Article  Google Scholar 

  • Ernst, H., & Merchant, M. E. (1941). Chip formation, friction, and high quality machined surfaces. Surface Treatment of Metals, ASM, p. 299

    Google Scholar 

  • Fang, F. Z., Wu, H., & Liu, Y. C. (2005). Modeling and investigation on machining mechanism of nano-cutting monocrystalline silicon. International Journal of Machine Tools and Manufacture, 45, 1681–1686.

    Article  Google Scholar 

  • Fang, F. Z., Wu, H., Zhou, W., & Hu, X. T. (2007). A study on mechanism of nano-cutting single crystal silicon. Journal of Materials Processing Technology, 184, 407–410.

    Article  Google Scholar 

  • Fang, N. (2003a). Slip-line modeling of machining with a rounded-edge tool—Part I: New model and theory. Journal of the Mechanics and Physics of Solids, 51, 715–742.

    Article  MATH  Google Scholar 

  • Fang, N. (2003b). Slip-line modeling of machining with a rounded-edge tool—Part II: Analysis of the size effect and the shear strain-rate. Journal of the Mechanics and Physics of Solids, 51, 743–762.

    Article  MATH  Google Scholar 

  • Fang, N., & Dewhurst, P. (2005). Slip-line modeling of built-up edge formation in machining. International Journal of Mechanical Sciences, 47, 1079–1098.

    Article  MATH  Google Scholar 

  • Finnie, I. (1956). Review of metal cutting analyses of the past hundred years. Mechanical Engineering, 78, 715.

    Google Scholar 

  • Fleck, N. A., & Hutchinson, J. W. (1993). A phenomenological theory for strain gradient effects in plasticity. Journal of the Mechanics and Physics of Solids, 41, 1825.

    Article  MathSciNet  MATH  Google Scholar 

  • Fleck, N. A., Muller, G. M., Ashby, M. F., & Hutchinson, J. W. (1994). Strain gradient plasticity: Theory and experiments. Acta Metallurgica et Materialia, 42(2), 475.

    Article  Google Scholar 

  • Gao, H., Huang, Y., Nix, W. D., & Hutchinson, J. W. (1999). Mechanism-based strain gradient plasticity—I. Theory. Journal of the Mechanics and Physics of Solids, 47, 1239.

    Article  MathSciNet  MATH  Google Scholar 

  • Gingold, R. A., & Monaghan, J. J. (1977). Smoothed particle hydrodynamics—Theory and application to non-spherical stars. Royal Astronomical Society, Monthly Notices, 181, 375–389.

    Article  MATH  Google Scholar 

  • Guduru, P. R., Ravichandran, G., & Rosakis, A. J. (2001). Observation of transient high temperature vertical microstructures in solids during adiabatic shear banding. Physical Review E, 64:036128.

    Google Scholar 

  • Guo, Y. B. (2004). A FEM study on mechanisms of discontinuous chip formation in hard turning. Journal of Materials Processing Technology, 155–156, 1350.

    Article  Google Scholar 

  • Hück, H. (1951). Dissertation. Aachen T.H.

    Google Scholar 

  • Inamura, T., Shimada, S., Takezawa, M., & Makahara, N. (1997). Brittle/ductile transition phenomena observed in computer simulations of machining defect-free monocrystalline silicon. Annals of the CIRP, 46, 31–34.

    Article  Google Scholar 

  • Iwata, K., Osakada, K., & Terasaka, Y. (1984). Process modeling of orthogonal cutting by the rigid-plastic finite element method. ASME Journal of Engineering Materials and Technology, 106, 132.

    Article  Google Scholar 

  • Jaeger, J. C. (1942). Moving sources of heat and temperature at sliding contact. Proceedings of Royal Society of New South Wales, 76, 203.

    Google Scholar 

  • Jiang, M. Q., & Dai, L. H. (2009). Formation mechanism of lamellar chips during machining of bulk metallic glass. Acta Materialia, 57, 2730–2738.

    Article  Google Scholar 

  • Johnson, G. R., & Cook, W. H. (1983). A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures (pp. 541–547). Hague: Seventh International Symposium on Ballistics.

    Google Scholar 

  • Johnson, G. R., & Cook, W. H. (1985). Fracture characteristics of three metals subject to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21, 31–48.

    Article  Google Scholar 

  • Kakino, Y. (1971). Analysis of the mechanism of orthogonal machining by the finite element method. Journal of the Japan Society for Precision Engineering, 37(7), 503.

    Article  Google Scholar 

  • Kim, K. W., Lee, W. Y., & Sin, H. (1999a). A finite element analysis for the characteristics of temperature and stress in micro-machining considering the size effect. International Journal of Machine Tools and Manufacture, 39, 1507.

    Article  Google Scholar 

  • Kim, K. W., Lee, W. Y., & Sin, H. C. (1999b). A finite element analysis of machining with the tool edge considered. Journal of Materials Processing Technology, 86, 45.

    Article  Google Scholar 

  • Komanduri, R., Chandrasekaran, N., & Raff, L. M. (1998). Effect of tool geometry in nanometric cutting: A molecular dynamics simulation approach. Wear, 219, 84–97.

    Article  Google Scholar 

  • Komanduri, R., Chandrasekaran, N., & Raff, L. M. (2000). M.D. simulation of nanometric cutting of single crystal aluminum—Effect of crystal orientation and direction of cutting. Wear, 242, 60–88.

    Article  Google Scholar 

  • Komvopoulous, K., & Erpenbeck, S. A. (1991). Finite element modeling of orthogonal metal cutting. ASME Journal of Engineering for Industry, 113, 253.

    Article  Google Scholar 

  • Lee, E. H., & Shaffer, B. W. (1951). The theory of plasticity applied to a problem of machining. Journal of Applied Mechanics, 73, 405.

    Google Scholar 

  • Lee, W. B. (2005). A personal reflection of mesoplasticity and its applications. Journal of Materials Processing Technology, 167, 151–160.

    Article  Google Scholar 

  • Lee, W. B., To, S., & Chan, C. Y. (1999). Deformation band formation in metal cutting. Scripta Materialia, 40, 439–443.

    Article  Google Scholar 

  • Lee, W. B., To, S., Sze, Y. K., & Cheung, C. F. (2003). Effect of material anisotropy on shear angle prediction in metal cutting—A mesoplasticity approach. International Journal of Mechanical Science, 45, 1739–1749.

    Article  MATH  Google Scholar 

  • Lei, S., & Yang, B. (2005). Distinct element simulation of ceramic machining: Material removal mechanism. Transactions of the North American Manufacturing Research Institution of SME, 33, 485–492.

    Google Scholar 

  • Liang, Y., Moronuki, N., & Furukawa, Y. (1994). Calculations of the effect of material anisotropy on microcutting processes. Precision Engineering, 16, 132.

    Article  Google Scholar 

  • Lin, Z. C., & Huang, J. C. (2004). A nano-orthogonal cutting model based on a modified molecular dynamics technique. Nanotechnology, 15, 510–519.

    Article  Google Scholar 

  • Limido, J., Espinosa, C., Salaün, M., & Lacome, J. L. (2007). SPH method applied to high speed cutting modelling. International Journal of Mechanical Sciences, 49, 898–908.

    Article  Google Scholar 

  • Liu, X., DeVor, R. E., & Kappor, S. G. (2004a). The mechanics of machining at the microscale: Assessment of the current state of the science. Transaction of ASME, Journal of Manufacturing Science and Engineering, 126, 666–678.

    Article  Google Scholar 

  • Liu, X., Jun, M. B. G., DeVor, R. E., & Kapoor, S. G. (2004b). Cutting mechanisms and their influence on dynamic forces, vibrations and stability in micro-endmilling. In Proceedings of the ASME Manufacturing Engineering Division (MED-15), ASME International Mechanical Engineering Congress and Exposition, Anaheim CA, Paper no. IMECE2004-62416.

    Google Scholar 

  • Liu, K., & Melkote, S. N. (2004). A strain gradient based finite element model for micro/meso-scale orthogonal cutting process. In Proceedings of 2004 Japan-USA Symposium on Flexible Automation, Denver, Colorado.

    Google Scholar 

  • Mallock, A. (1881). The action of cutting tools. Proceedings of the Royal Society of London, 33, 127.

    Article  Google Scholar 

  • Marusich, T. D., & Ortiz, M. (1995). Modelling and simulation of high speed machining. International Journal of Numerical Methods in Engineering, 38, 3675.

    Article  MATH  Google Scholar 

  • Medyanik, S. N., Liu, W. K., & Li, S. (2007). On criteria for dynamic adiabatic shear band propagation. Journal of the Mechanics and Physics of Solids, 55, 1439–1461.

    Article  MathSciNet  MATH  Google Scholar 

  • Merchant, M. E. (1945). Mechanics of the metal cutting process. I: orthogonal cutting and A type 2 chip. Journal of Applied Physics, 16, 267.

    Article  Google Scholar 

  • Miller, R., Ortiz, M., Phillips, R., Shenoy, V. B., & Tadmor, E. B. (1998a). Quasicontinuum models of fracture and plasticity. Engineering Fracture Mechanics, 61, 427–444.

    Article  Google Scholar 

  • Miller, R., Tadmor, E. B., Phillips, R., & Ortiz, M. (1998b). Quasicontinuum simulation of fracture at the atomic scale. Modelling and Simulation in Materials Science and Engineering, 6, 607–638.

    Article  Google Scholar 

  • Molinari, A., & Moufki, A. (2008). The Merchant’s model of orthogonal cutting revisited: A new insight into the modeling of chip formation. International Journal of Mechanical Sciences, 50, 124–131.

    Article  MATH  Google Scholar 

  • Ng, E.-G., Aspinwall, D. K., Brazil, D., & Monaghan, J. (1999). Modeling of temperature and forces when orthogonally machining hardened steel. International Journal of Machine Tools and Manufacture, 39, 885.

    Article  Google Scholar 

  • Obikawa, T., Sasahara, H., Shirakashi, T., & Usui, E. (1997). Application of computational machining method to discontinuous chip formation. Journal of Manufacturing Science and Engineering, 119, 667.

    Article  Google Scholar 

  • Pen, H., Bai, Q., Liang Y., & Chen, M. (2009). Multiscale simulation of nanometric cutting of single crystal copper—Effect of different cutting speeds. Acta Metallurgica Sinica (English Letters), 22(6), 440–446.

    Google Scholar 

  • Piispanen, V. (1948). Theory of formation of metal chips. Journal of Applied Physics, 19, 876–881.

    Article  Google Scholar 

  • Potyondy, D. O., & Cundall, P. A. (2004). A bonded-particle model for rock. International Journal of Rock Mechanics & Mining Science, 41, 1329–1364.

    Article  Google Scholar 

  • Rakotomolala, R., Joyot, P., & Touratier, M. (1993). Arbitrary Lagrangian-Eulerian thermo-mechanical finite-element model of material cutting. Communications in Numerical Methods in Engineering, 9, 975.

    Article  MATH  Google Scholar 

  • Recht, R. F. (1985). A dynamic analysis of high speed machining. ASME Journal of Engineering for Industry, 107, 309–315.

    Article  Google Scholar 

  • Recht, R. F. (1964). Catastrophic thermoplastic shear. Journal of Applied Mechanics, pp 189–193.

    Google Scholar 

  • Rhim, S.-H., & Oh, S.-I. (2006). Prediction of serrated chip formation in metal cutting process with new flow stress model for AISI 1045 steel. Journal of Materials Processing Technology, 171, 417–422.

    Article  Google Scholar 

  • Sato, M., Kato, K., & Tuchiya, K. (1978). Effect of material and anisotropy upon the cutting mechanism. Transactions JIM, 9, 530.

    Article  Google Scholar 

  • Sekhon, G. S., & Chenot, S. (1993). Numerical simulation of continuous chip formation during non-steady orthogonal cutting. Engineering Computations, 10, 31.

    Article  Google Scholar 

  • Shaw, M.C. (1968). Historical aspects concerning removal operations on metals. Metal Transformations, Gordon and Breach, NY, pp. 211.

    Google Scholar 

  • Shaw, M. C. (1984). Shear strain in cutting. In J.R. Crookall, & M. C. Shaw (Eds.), Metal cutting principles. Oxford: Clarendon Press, p. 168

    Google Scholar 

  • Shi, J., & Liu, C. R. (2004). The influence of material models on finite element simulation of machining. ASME Journal of Manufacturing Science and Engineering, 126, 849–857.

    Article  Google Scholar 

  • Shih, A. J., & Yang, H. T. Y. (1993). Experimental and finite element predictions of residual stresses due to orthogonal metal cutting. International Journal of Numerical Methods in Engineering, 36, 1487.

    Article  Google Scholar 

  • Shimada, S., Ikawa, N., Tanaka, H., Ohmori, G., Uchikoshi, J., & Yoshinaga, H. (1993). Feasibility study on ultimate accuracy in microcutting using molecular dynamics simulation. Annals of the CIRP, 42, 91–94.

    Article  Google Scholar 

  • Shirakashi, T., & Usui, E. (1976). Simulation analysis of orthogonal metal cutting process. Journal of the Japan Society for Precision Engineering, 42, 340.

    Article  Google Scholar 

  • Stabler, G. V. (1951). The fundamental geometry of cutting tools. Proceedings of the Institution of Mechanical Engineers, 165, 14–21.

    Article  Google Scholar 

  • Strenkowski, J. S., & Carrol, J. T., III. (1985). A finite element model of orthogonal metal cutting. ASME Journal of Engineering for Industry, 107, 349.

    Article  Google Scholar 

  • Sun, X., Chen, S., Cheng, K., Huo, D., & Chu, W. (2006). Multiscale simulation on nanometric cutting of single crystal copper. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220, 1217–1222.

    Article  Google Scholar 

  • Tadmor, E. B., Miller, R., Phillips, R., & Ortiz, M. (1999). Nanoindentation and incipient plasticity. Journal of Materials Research, 14, 2233–2250.

    Article  Google Scholar 

  • Tadmor, E. B., Ortiz, M., & Phillips, R. (1996). Quasicontinuum analysis of defects in solids. Philosophical Magazine A, 73, 1529–1563.

    Article  Google Scholar 

  • Tadmor, E. B., & Phillips, R. (1996). Mixed atomistic and continuum models of deformation in solids. Langmuir, 12, 4529–4534.

    Article  Google Scholar 

  • Tan, Y., Yang, D., & Sheng, Y. (2008). Study of polycrystalline Al2O3 machining cracks using discrete element method. International Journal of Machine Tools and Manufacture, 48, 975–982.

    Article  Google Scholar 

  • Tan, Y., Yang, D., & Sheng, Y. (2009). Discrete element method (DEM) modeling of fracture and damage in the machining process of polycrystalline SiC. Journal of the European Ceramic Society, 29, 1029–1037.

    Article  Google Scholar 

  • Teng, X., Wierzbicki, T., & Couque, H. (2007). On the transition from adiabatic shear banding to fracture. Mechanics of Materials, 39, 107–125.

    Article  Google Scholar 

  • Tersoff, J. (1986). New empirical model for the structural properties of silicon. Physical Review Letters, 56 (6): 632–635.

    Google Scholar 

  • Tropov, A., & Ko, S.-L. (2003). Prediction of tool-chip contact length using a new slip-line solution for orthogonal cutting. International Journal of Machine Tools and Manufacture, 43, 1209–1215.

    Article  Google Scholar 

  • Ueda, K., & Manabe, K. (1993). Rigid-plastic FEM analysis of three-dimensional deformation field in chip formation process. Annals of the CIRP, 42(1), 35.

    Article  Google Scholar 

  • Ueda, K., Manabe, K., & Nozaki, S. (1996). Rigid-plastic FEM of three-dimensional cutting mechanism (2nd report)—Simulation of plain milling process. Journal of the Japan Society for Precision Engineering, 62(4), 526.

    Article  Google Scholar 

  • Wang, H., To, S., Chan, C. Y., Cheung, C. F., & Lee, W. B. (2010). A theoretical and experimental investigation of the tool-tip vibration and its influence upon surface generation in single-point diamond turning. International Journal of Machine Tools and Manufacture, 50, 241–252.

    Article  Google Scholar 

  • Xiao, G., To, S., & Zhang, G. (2015). Molecular dynamics modelling of brittle-to-ductile cutting mode transition: Case study on silicon carbide. International Journal of Machine Tools and Manufacture, 88, 214–222.

    Article  Google Scholar 

  • Yen, Y. C., Jain, A., & Altan, T. (2004). A finite element analysis of orthogonal machining using different tool edge geometries. Journal of Materials Processing Technology, 146, 72.

    Article  Google Scholar 

  • Zhang, B., Tokura, H., & Yoshikawa, M. (1988). Study on surface cracking of alumina scratching by single-point diamonds. Journal of Materials Science, 23, 3214–3224.

    Article  Google Scholar 

  • Zhou, Y., Zeng, Y., He, G., & Zhou, B. (2001). The healing of quenched crack in 1045 steel under electropulsing. Journal of Material Research, 16, 17–19.

    Article  Google Scholar 

  • Zienkiewicz, O. C. (1971). The finite element method in engineering science, 2nd edn. Chapter 18. London: McGraw-Hill.

    Google Scholar 

  • Zhang, J. H. (1986). Theory and technique of precision cutting. Pergamon Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandy Suet To .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

To, S.S., Wang, V.H., Lee, W.B. (2018). Modelling and Simulation for Ultra-Precision Machining. In: Materials Characterisation and Mechanism of Micro-Cutting in Ultra-Precision Diamond Turning. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54823-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54823-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54821-9

  • Online ISBN: 978-3-662-54823-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics