Skip to main content

Factors Influencing Machined Surface Quality

  • Chapter
  • First Online:
  • 1338 Accesses

Abstract

Ultra-precision diamond turning aims at producing advanced components with not only a high-dimensional accuracy but also a good surface roughness and form accuracy. Since the achievable machining accuracy is governed by the accuracy of the relative motion between the cutting edge and the workpiece, the performance of machine tools is of prime importance. Optimum conditions of factors such as machine tools, cutting tools, workpiece materials, cutting variables, cutting fluid, working environment, etc., need to be chosen to achieve a good result in diamond turning. This chapter elaborates all these key factors influencing the machined surface finish.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abouelatta, O. B., & Mádl, J. (2001). Surface roughness prediction based on cutting parameters and tool vibrations in turning operations. Journal of Materials Processing Technology, 118, 269–277.

    Article  Google Scholar 

  • Arcona, C. (1996), Tool force, chip formation and surface finish in diamond turning. PhD thesis, North Carolina State University, p. 1.

    Google Scholar 

  • Arcona, C., & Dow, T. A. (1998). An empirical tool force model for precision machining. Journal of Manufacturing Science and Engineering, 120, 700.

    Article  Google Scholar 

  • Asai, S., Taguchi, Y., Horio, K., & Kasai, T. (1990). Measuring the very small cutting edge radius for a diamond tool using a new kind of SEM having two detectors. Annals of the CIRP, 39(1), 85.

    Article  Google Scholar 

  • Baker, J. R., & Rough, K. E. (2002). Use of finite element structural models in analyzing machine tool chatter. Finite Elements in Analysis and Design, 38, 1029–1046.

    Article  MATH  Google Scholar 

  • Berger, B. S., Minis, L., Harley, J., Rokni, M., & Papadopoulos, M. (1998). Wavelet based cutting state identification. Journal of Sound and Vibration, 213, 813–827.

    Article  Google Scholar 

  • Bispink, T. (1992). Performance analysis of feed-drive systems in diamond-turning by machining specified test samples. Annals of the CIRP, 41, 601–604.

    Article  Google Scholar 

  • Black, J. T. (1971). On the fundamental mechanism of large strain plastic deformation. Journal of Engineering for Industry, 93, 507.

    Article  Google Scholar 

  • Black, J. T. (1972). Shear front-lamella structures in large strain plastic deformation processes. Journal of Engineering for Industry, 94(2), 307.

    Article  Google Scholar 

  • Brown, R. H., & Luong, H. S. (1976). The influence of microstructure discontinuities on chip formation. Annals of CRIP, 25, 49.

    Google Scholar 

  • Bryan, J. B. (1979). Design and construction of an ultraprecision 84 in diamond turning machine. Precision Engineering, 1, 13.

    Article  Google Scholar 

  • Chae, J., Park, S. S., & Freiheit, T. (2006). Investigation of micro-cutting operations. International Journal of Machine Tools and Manufacture, 46, 313–332.

    Article  Google Scholar 

  • Cheung, C. F., & Lee, W. B. (2000a). A multi-spectrum analysis of surface roughness formation in ultra-precision machining. Precision Engineering, 24, 77–87.

    Article  Google Scholar 

  • Cheung, C. F., & Lee, W. B. (2000b). A theoretical and experimental investigation of surface roughness formation in ultra-precision diamond turning. International Journal of Machine Tools and Manufacture, 40, 979–1002.

    Article  Google Scholar 

  • Donaldson, R. R., Patterson, S. R. (1983). Design and construction of a large vertical axis diamond turning machine. Proc. SPIE, p. 433

    Google Scholar 

  • Evans, C. (1991). Cryogenic diamond turning of stainless steel. Annals of CIRP, 40, 571.

    Article  Google Scholar 

  • Guo, Y. B., & Chou, Y. K. (2004). The determination of ploughing force and its influence on material properties in metal cutting. Journal of Materials Processing Technology, 148, 368–375.

    Article  Google Scholar 

  • Hara, N. (1988). Study on estimating characteristics of natural diamond tools. In Proceedings of the Spring Conference on JSPE, p. 391 (in Japanese).

    Google Scholar 

  • Hashimoto, (1989). Proceedings of 4th International Precision Engineering Seminar, Monteey, USA.

    Google Scholar 

  • Ikawa, N., Shimada, S., & Morooka, H. (1987). Technology of diamond tool for ultraprecision metal cutting. Bulletin of the Japan Society of Precision Engineering, 21, 233.

    Google Scholar 

  • Ikawa, N., Shimada, S., Tanaka, H., & Ohmori, G. (1991). An atomistic analysis of nanometric chip removal process as affected by tool—Work interaction in diamond turning. Annals of the CIRP, 44(1), 551.

    Article  Google Scholar 

  • Iwata, K, Ueda, K. (1974). Dynamic behaviour of manganese sulphide inclusions in machining under scanning electron microscope observation. In Proceedings of the 1st International Conference On Production Engineering, Tokyo, Japan, p. 516.

    Google Scholar 

  • Iwata, K., & Ueda, K. (1976). The significance of dynamic crack behaviour in chip formation. Annals of CIRP, 25, 65.

    Google Scholar 

  • Kanai, A. (1983). Nanometer positioning characteristics of closed looped differential hydro or Aerostatic actuator. Annals of the CIRP, 32(1), 287.

    Article  Google Scholar 

  • Keen, D. (1971). Some observation on the wear of diamond tools used in piston machining. Wear, 17, 195.

    Article  Google Scholar 

  • Khraisheh, M. K., Pezeshki, C., & Bayoumi, A. E. (1995). Time series based analysis for primary chatter in metal cutting. Journal of Sound and Vibration, 180, 67–87.

    Article  Google Scholar 

  • Ko, T. J., & Cho, D. W. (1992). Fuzzy pattern recognition for tool wear monitoring in diamond turning. Annals of CIRP, 41, 125.

    Article  Google Scholar 

  • Kobayashi, A. (1978). High precision cutting with a new ultraprecision spindle. Annals of the CIRP, 27, 283.

    Google Scholar 

  • Komanduri, R., & Shaw, M. C. (1975). Wear of synthetic diamond when grinding ferrous materials. Nature, 255, 211.

    Article  Google Scholar 

  • Komanduri, R., & Shaw, M. C. (1976). On the diffusion wear of diamond in grinding pure iron. Philosophical Magazine, 34, 195.

    Article  Google Scholar 

  • König, W., & Spenrath, N. (1991). The influence of the crystallographic structure of the substrate material on surface quality and cutting forces in micromachining. In Proceedings of the 6th International Precision Engineering Seminar, Braunscheweig, Germany, p. 141.

    Google Scholar 

  • Krauskopf, B. (1984). Diamond turning: Reflection demand for precision. Manufacturing Engineering, 92, 90.

    Google Scholar 

  • Lee, W. B., Cheung, C. F., & To, S. (2002). A microplasticity analysis of micro-cutting force variation in ultra-precision diamond turning. Journal of Manufacturing Science and Engineering, 124, 170–177.

    Article  Google Scholar 

  • Lee, W. B., & Zhou, M. (1993). A theoretical analysis of the effect of crystallographic orientation on chip formation in micro-machining. International Journal of Machine Tools and Manufacture, 33(3), 439.

    Article  Google Scholar 

  • LeMaitre, F., & Bizeul, D. (1974). Contribution to the study of periodic phenomena in dynamic deformations. Annals of the CIRP, 23, p. 5.

    Google Scholar 

  • Liu, X., DeVor, R. E., & Kappor, S. G. (2004a). The mechanics of machining at the microscale: Assessment of the current state of the science. Transaction of ASME, Journal of Manufacturing Science and Engineering, 126, 666–678.

    Article  Google Scholar 

  • Liu, X., Jun, M. B. G., DeVor, R. E., & Kapoor, S. G. (2004b), Cutting mechanisms and their influence on dynamic forces, vibrations and stability in micro-endmilling. In Proceedings of the ASME Manufacturing Engineering Division (MED-15), ASME International Mechanical Engineering Congress and Exposition, Anaheim CA, Paper no. IMECE2004–62416.

    Google Scholar 

  • Lucca, D. A., Rhorer, R. L., & Komanduri, R. (1990). Energy dissipation in the ultra-precision machining of copper. Annals of the CIRP, 40(1), 69.

    Article  Google Scholar 

  • Moon, F. C., & Kalmar-Nagy, T. (2001). Nonlinear models for complex dynamics in cutting materials. Philosophical Transactions of the Royal Society of London A, 359, 695–711.

    Article  MATH  Google Scholar 

  • Moriwaki, T., Horiuchi, A., & Okuda, K. (1990). Effect of cutting heat on machining accuracy in ultraprecision diamond turning. Annals of the CIRP, 39(1), 81.

    Article  Google Scholar 

  • Patterson, S.R., Magrab, E.B. (1985). Design and testing of a fast tool servo for diamond turning, Abstracts, 3rd IPES, Inter Laken, p. 29.

    Google Scholar 

  • Ohmori, G., & Takada, S. (1982). Primary factors affecting accuracy in ultraprecision machining by diamond turning. Bull. Japan Society of precision Engineering, 16, p.3.

    Google Scholar 

  • Sato, M., Kato, K., & Tuchiya, K. (1978). Effect of material and anisotropy upon the cut-ting mechanism. Transactions of JIM, 9, 530.

    Article  Google Scholar 

  • Schmitz, T. L., Davies, M. A., & Kennedym, M. D. (2001). Tool point frequency response pre-diction for high-speed machining by RCSA. Transactions of ASME, Journal of Manufacturing Science and Engineering, 123, 700–707.

    Article  Google Scholar 

  • Shaw, M. C. (1984). Shear strain in cutting. In J. R. Crookall & M. C. Shaw (Eds.), Metal cutting principles. Oxford: Clarendon Press.

    Google Scholar 

  • Shaw, M. C., Cook, N. H., & Finnie, I. (1953). The shear-angle relationship in metal cutting. Transactions of the ASME, 75, 273.

    Google Scholar 

  • Shawky, A. M., & Elbestawi, M. A. (1997). An enhanced dynamic model in turning including the effect of ploughing forces. Transactions of ASME, Journal of Manufacturing Science and Engineering, 119, 10–20.

    Article  Google Scholar 

  • Shimokohbe, A., Horikawa, O., & Sato, K. (1989). An active air journal bearing with ultraprecision, infinite static stiffness, high damping capability and new functions. Annals of the CIRP, 38, 529.

    Article  Google Scholar 

  • Stadler, H., freisleben, B., & Heubeck, C. (1987). Response of metallic material to micromachining, 4th IPES, Cranfield, U.K.

    Google Scholar 

  • Sze, Y. K., Lee, W. B., Cheung, C. F., & To, S. (2006). A power spectrum analysis of effect of rolling texture on cutting forces in single-point diamond turning. Journal of Materials Processing Technology, 180, 305–309.

    Article  Google Scholar 

  • Takasu, S., Masuda, M., & Nishiguchi, T. (1985). Influence of steady vibration with small amplitude upon surface roughness in diamond machining. Annals of the CIRP, 34(1), 463.

    Article  Google Scholar 

  • Taminiau, D. A., & Dautzenberg, J. H. (1991). Bluntness of tool and process forces in high—Precision cutting. Annals of the CIRP, 40, 65.

    Article  Google Scholar 

  • Taylor, G. I. (1938). Plastic strain in metals. Journal of Institute of Metals, 62, p. 307.

    Google Scholar 

  • To, S., Cheung, C. F., & Lee, W. B. (2001). Influence of material swelling on surface roughness in diamond turning of single crystals. Materials Science and Technology, 17, 102–108.

    Article  Google Scholar 

  • Vela-Martinez, L., Jauregui-Correa, J. C., Rubio-Cerda, E., Herrera-Ruiz, G., & Lozano-Guzman, A. (2008). Analysis of compliance between the cutting tool and the workpiece on the stability of a turning process. International Journal of Machine Tools and Manufacture, 48, 1054–1062.

    Article  Google Scholar 

  • Wang, H., To, S., Chan, C. Y., Cheung, C. F., & Lee, W. B. (2010). A theoretical and experimental investigation of the tool-tip vibration and its influence upon surface generation in single-point diamond turning. International Journal of Machine Tools and Manufacture, 50, 241–252.

    Article  Google Scholar 

  • Weck, M., & Hartel, R. (1986). Test and measuring methods to analyze indulation effect on micro-machined optical surfaces generated by vibration on precision machinery. Orlando: Proc. SPIE.

    Google Scholar 

  • Weck, M., & Modemann, K. (1987). Checking surface modulation on metal-optics by analysing ultraprecision machines. Denhaag: Proc. SPIE.

    Google Scholar 

  • Weck, M. & Modemann, K. (1988). Surface quality as function of the static and dynamic ma-chine tool behaviour. In Proceedings of the 4th International Conference On Metrology and Properties of Engineering Surface, Washington D.C., USA.

    Google Scholar 

  • Whitehouse, D. J. (1994). Handbook of surface metrology. Bristol, Philadelphia: Institute of Physics Publishing.

    Google Scholar 

  • Wiercigroch, M., & Budak, E. (2001). Sources of nonlinearities, chatter generation and suppression in metal cutting. Philosophical Transactions of the Royal Society of London A, 359, 663–693.

    Article  MATH  Google Scholar 

  • Williams, J. A., & Gare, N. (1977). Some observations on the flow stress of metals during metal cutting. Wear, 42, 341.

    Article  Google Scholar 

  • Wu, D. W. (1986). Governing equations of the shear angle oscillation in dynamic orthogonal cutting. Transaction of ASME, Journal of Engineering for Industry, 108, 280–287.

    Article  Google Scholar 

  • Zhang, J. H. (1986). Theory and technique of precision cutting. Oxford: Pergamon Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandy Suet To .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Suet To, S., Hao Wang, V., Lee, W.B. (2018). Factors Influencing Machined Surface Quality. In: Materials Characterisation and Mechanism of Micro-Cutting in Ultra-Precision Diamond Turning. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54823-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54823-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54821-9

  • Online ISBN: 978-3-662-54823-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics