Skip to main content

Computertomographie

  • Chapter
  • First Online:
Medizinische Physik

Zusammenfassung

Die röntgenbasierte Computertomographie (CT) ist das wichtigste diagnostische Werkzeug des Radiologen. CT-Systeme sind nahezu überall verfügbar und decken nahezu vollständig das Spektrum radiologischer diagnostischer Fragestellungen für alle menschlichen Organe ab. Dichtekontraste, materialspezifische Kontraste und funktionelle Parameter lassen sich mit CT in Scanzeiten von wenigen Sekunden mit submillimetergenauer Ortsauflösung und Subsekunden-Zeitauflösung über Scanlängen bis hin zu zwei Metern routinemäßig erfassen (Abb. 8.1) [74]. Die CT-Volumina, typischerweise bestehend aus Tausenden von Schichten, sind verzerrungsfrei, hochgenau und jederzeit reproduzierbar. Zudem stellen die Graustufen, CT-Werte genannt, ein quantitatives Maß der Dichtewerte dar. Somit ist CT, im Gegensatz zur MR, eine quantitative bildgebende Modalität.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Der Senkrechtoperator dreht den Vektor \(\boldsymbol{v}\) um 90° gegen den Uhrzeigersinn: \(\boldsymbol{v}^{\bot}=\binom{-v_{y}}{v_{x}}\). Es gilt \(\boldsymbol{v}_{1}^{\bot}\cdot\boldsymbol{v}_{2}^{\bot}=\boldsymbol{v}_{1}\cdot\boldsymbol{v}_{2}\) und \(\boldsymbol{v}_{1}^{\bot}\cdot\boldsymbol{v}_{2}=-\boldsymbol{v}_{1}\cdot\boldsymbol{v}_{2}^{\bot}\).

  2. 2.

    Für die Fouriertransformation \(G\) einer Funktion \(g\) und für die inverse Fouriertransformation verwenden wir folgende Konvention:

    $$\begin{aligned}\displaystyle G(u)&\displaystyle=(\mathsf{F}g)(u)=\int_{-\infty}^{\infty}\mathrm{d}xg(x)\mathrm{e}^{-2\uppi\mathrm{i}ux}\\ \displaystyle g(x)&\displaystyle=(\mathsf{F}^{-1}G)(x)=\int_{-\infty}^{\infty}\mathrm{d}uG(u)\mathrm{e}^{2\uppi\mathrm{i}ux}.\end{aligned}$$
  3. 3.

    Das Faltungstheorem besagt, dass die Faltung zweier Funktionen \(g_{1}\) und \(g_{2}\)

    $$\displaystyle(g_{1}\ast g_{2})(x)=g_{1}(x)\ast g_{2}(x)=\int\mathrm{d}tg_{1}(t)g_{2}(x-t)$$

    als Multiplikation im Frequenzraum ausgeführt werden kann:

    $$\displaystyle\mathsf{F}(g_{1}\ast g_{2})=(\mathsf{F}g_{1})(\mathsf{F}g_{2})=G_{1}G_{2}.$$

References

  1. AAPM Task Group 204 (2011) AAPM report 204: size-specific dose estimates. Ssde) Pediatr Adult Body Ct Exam :

    Google Scholar 

  2. AAPM Task Group 220 (2014) AAPM Report 220: Use of water equivalent diameter for calculating patient size and size-specific dose estimates. Ssde) Ct :

    Google Scholar 

  3. Baer M, Kachelriess M (2012) Hybrid scatter correction for CT imaging. Phys Med Biol 57(21):6849–6867. https://doi.org/10.1088/0031-9155/57/21/6849

    Article  Google Scholar 

  4. Bal M, Spies L (2006) Metal artifact reduction in CT using tissue-class modeling and adaptive prefiltering. Med Phys 33(8):2852–2859. https://doi.org/10.1118/1.2218062

    Article  Google Scholar 

  5. Bal M, Celik H, Subramanyan K, Eck K, Spies L (2005) A radial adaptive filter for metal artifact reduction. In. Imaging, Bd. 2005. Medical, International Society for Optics and Photonics, S 2075–2082

    Google Scholar 

  6. Ballabriga R, Alozy J, Blaj G, Campbell M, Fiederle M, Frojdh E, Heijne EHM, Llopart X, Pichotka M, Procz S, Tlustos L, Wong W (2013) The Medipix3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging. J Instrum 8(2):C2016. https://doi.org/10.1088/1748-0221/8/02/C02016

    Article  Google Scholar 

  7. Bamberg F, Klotz E, Flohr T, Becker A, Becker CR, Schmidt B, Wintersperger BJ, Reiser MF, Nikolaou K (2010) Dynamic myocardial stress perfusion imaging using fast dual-source CT with alternating table positions: initial experience. Eur Radiol 20(5):1168–1173. https://doi.org/10.1007/s00330-010-1715-9

    Article  Google Scholar 

  8. Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR (2011) Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 21(7):1424–1429. https://doi.org/10.1007/s00330-011-2062-1

    Article  Google Scholar 

  9. Beekman FJ, Kamphuis C (2001) Ordered subset reconstruction for x-ray CT. Phys Med Biol 46(7):1835–1844. https://doi.org/10.1088/0031-9155/46/7/307

    Article  Google Scholar 

  10. Bongartz G, Golding S, Jurik A, Leonardi M (2000) Meerten Ev, Geleijns J, Jessen K, Panzer W. Shrimpton P, Tosi G (European guidelines on quality criteria for computed tomography: EUR 16262. European Commission)

    Google Scholar 

  11. Bongartz G, Golding S, Jurik A, Leonardi M, Van Persijn Van Meerten E, Rodríguez R, Schneider K, Calzado A, Geleijns J, Jessen K (2004) European guidelines for multislice computed tomography. European Commission,

    Google Scholar 

  12. Brabant L, Pauwels E, Dierick M, Van Loo D, Boone MA, Van Hoorebeke L (2012) A novel beam hardening correction method requiring no prior knowledge, incorporated in an iterative reconstruction algorithm. Ndt E Int 51:68–73. https://doi.org/10.1016/j.ndteint.2012.07.002

    Article  Google Scholar 

  13. Brehm M, Paysan P, Oelhafen M, Kachelriess M (2013) Artifact-resistant motion estimation with a patient-specific artifact model for motion-compensated cone-beam CT. Med Phys 40(10):101913. https://doi.org/10.1118/1.4820537

    Article  Google Scholar 

  14. Brooks RA, Di Chiro G (1976) Beam hardening in x-ray reconstructive tomography. Phys Med Biol 21(3):390–398

    Article  Google Scholar 

  15. Bruder H, Kachelriess M, Schaller S, Stierstorfer K, Flohr T (2000) Single-slice rebinning reconstruction in spiral cone-beam computed tomography. Ieee Trans Med Imaging 19(9):873–887. https://doi.org/10.1109/42.887836

    Article  Google Scholar 

  16. Bundesamt für Strahlenschutz (BfS) (2013) Umweltradioaktivität und Strahlenbelastung im Jahr 2012: Unterrichtung durch die Bundesregierung

    Google Scholar 

  17. Christner JA, Kofler JM, McCollough CH (2010) Estimating effective dose for CT using dose–length product compared with using organ doses: consequences of adopting International Commission on Radiological Protection Publication 103 or dual-energy scanning. Am J Roentgenol 194(4):881–889

    Article  Google Scholar 

  18. Coleman AJ, Sinclair M (1985) A beam-hardening correction using dual-energy computed-tomography. Phys Med Biol 30(11):1251–1256. https://doi.org/10.1088/0031-9155/30/11/007

    Article  Google Scholar 

  19. Deutsches Institut für Normung (2003) Klinische Dosimetrie – Teil 7: Verfahren zur Ermittlung der Patientendosis in der Röntgendiagnostik. DIN :6809–6807

    Google Scholar 

  20. Doss M, Little MP, Orton CG (2014) Point/counterpoint: low-dose radiation is beneficial, not harmful. Med Phys 41(7):70601

    Article  Google Scholar 

  21. Feinendegen L (2014) Evidence for beneficial low level radiation effects and radiation hormesis. Br J Radiol 78(925):3–7

    Article  Google Scholar 

  22. Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1(6):612–619. https://doi.org/10.1364/Josaa.1.000612

    Article  ADS  Google Scholar 

  23. Flohr TG, Stierstorfer K, Ulzheimer S, Bruder H, Primak AN, McCollough CH (2005) Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot. Med Phys 32(8):2536–2547. https://doi.org/10.1118/1.1949787

    Article  Google Scholar 

  24. Flohr TG, Stierstorfer K, Suss C, Schmidt B, Primak AN, McCollough CH (2007) Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT. Med Phys 34(5):1712–1723. https://doi.org/10.1118/1.2722872

    Article  Google Scholar 

  25. Gies M, Kalender WA, Wolf H, Suess C (1999) Dose reduction in CT by anatomically adapted tube current modulation. I. Simulation studies. Med Phys 26(11):2235–2247. https://doi.org/10.1118/1.598779

    Article  Google Scholar 

  26. Glover GH (1982) Compton scatter effects in CT reconstructions. Med Phys 9(6):860–867. https://doi.org/10.1118/1.595197

    Article  Google Scholar 

  27. Glover GH, Pelc NJ (1981) An algorithm for the reduction of metal clip artifacts in CT reconstructions. Med Phys 8(6):799–807. https://doi.org/10.1118/1.595032

    Article  Google Scholar 

  28. Goetti R, Leschka S, Desbiolles L, Klotz E, Samaras P, von Boehmer L, Stenner F, Reiner C, Stolzmann P, Scheffel H, Knuth A, Marincek B, Alkadhi H (2010) Quantitative computed tomography liver perfusion imaging using dynamic spiral scanning with variable pitch: feasibility and initial results in patients with cancer metastases. Invest Radiol 45(7):419–426. https://doi.org/10.1097/RLI.0b013e3181e1937b

    Article  Google Scholar 

  29. Goodsitt MM (1995) Beam hardening errors in post-processing dual energy quantitative computed tomography. Med Phys 22(7):1039–1047. https://doi.org/10.1118/1.597590

    Article  Google Scholar 

  30. Gordon R (1974) A tutorial on ART (algebraic reconstruction techniques). Ieee Trans Nucl Sci 21(3):78–93

    Article  ADS  Google Scholar 

  31. Gordon R, Bender R, Herman GT (1970) Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J Theor Biol 29(3):471–481

    Article  Google Scholar 

  32. Grass M, Kohler T, Proksa R (2000) 3D cone-beam CT reconstruction for circular trajectories. Phys Med Biol 45(2):329–347

    Article  Google Scholar 

  33. Greess H, Wolf H, Kalender W, Bautz W (1998) Dose reduction in CT by anatomically adapted tube current modulation: first patient studies. In: Advances in CT IV. Springer, Berlin, Heidelberg, S 35–40

    Google Scholar 

  34. Greess H, Wolf H, Baum U, Lell M, Pirkl M, Kalender W, Bautz WA (2000) Dose reduction in computed tomography by attenuation-based on-line modulation of tube current: evaluation of six anatomical regions. Eur Radiol 10(2):391–394. https://doi.org/10.1007/s003300050062

    Article  Google Scholar 

  35. Grimmer R, Fahrig R, Hinshaw W, Gao H, Kachelriess M (2012) Empirical cupping correction for CT scanners with primary modulation (ECCP). Med Phys 39(2):825–831. https://doi.org/10.1118/1.3676180

    Article  Google Scholar 

  36. Herman GT (1979) Demonstration of beam hardening correction in computed tomography of the head. J Comput Assist Tomogr 3(3):373–378

    Article  Google Scholar 

  37. Hsieh J (1998) Adaptive streak artifact reduction in computed tomography resulting from excessive x-ray photon noise. Med Phys 25(11):2139–2147. https://doi.org/10.1118/1.598410

    Article  Google Scholar 

  38. Hsieh J, Gurmen O, King KF (2000) (2000) Recursive correction algorithm for detector decay characteristics in CT. In. Imaging, Bd. 2000. Medical, International Society for Optics and Photonics, S 298–305

    Google Scholar 

  39. Hsieh J, Chao E, Thibault J, Grekowicz B, Horst A, McOlash S, Myers T (2004) Algorithm to extend reconstruction field-of-view. In. IEEE, International Symposium on Biomedical Imaging: Nano to Macro, S 1404–1407

    Google Scholar 

  40. Hunold P, Vogt FM, Schmermund A, Debatin F Jr, Kerkhoff G, Budde T, Erbel R, Ewen K, Barkhausen Jr (2003) Radiation exposure during cardiac CT: effective doses at multi–detector row CT and electron-beam CT 1. Radiology 226(1):145–152

    Article  Google Scholar 

  41. International Commission on Radiological Protection (ICRP) (1977) Recommendations of the ICRP. ICRP publication 23. Ann Icrp 1(3):

    Google Scholar 

  42. International Commission on Radiological Protection (ICRP) (1991) 1990 recommendations of the international commission on radiological protection. ICRP Publication 60. Ann Icrp 21:1–3

    Article  Google Scholar 

  43. International Commission on Radiological Protection (ICRP) (2007) The 2007 recommendations of the international commission on radiological protection. ICRP Publication 103. Ann Icrp 37:2–4

    Google Scholar 

  44. International Electrotechnical Commission (2004) IEC 61223-3-5: evaluation and routine testing in medical imaging departments – part 3–5: acceptance tests – imaging performance of computed tomography x-ray equipment

    Google Scholar 

  45. International Electrotechnical Commission (2009) IEC 60601-2-44: Medical electrical equipment – part 2-44: Particular requirements for the basic safety and essential performance of x-ray equipment for computed tomography

    Google Scholar 

  46. Jackson JI, Meyer CH, Nishimura DG, Macovski A (1991) Selection of a convolution function for Fourier inversion using gridding [computerised tomography application. Ieee Trans Med Imaging 10(3):473–478

    Article  Google Scholar 

  47. Jeong KY, Ra JB (2009) Reduction of artifacts due to multiple metallic objects in computed tomography. In: SPIE Medical Imaging, 2009. International Society for Optics and Photonics, S 72583E–72588

    Google Scholar 

  48. Jessen KA, Shrimpton PC, Geleijns J, Panzer W, Tosi G (1999) Dosimetry for optimisation of patient protection in computed tomography. Appl Radiat Isot 50(1):165–172

    Article  Google Scholar 

  49. Joseph PM, Spital RD (1978) A method for correcting bone induced artifacts in computed tomography scanners. J Comput Assist Tomogr 2(1):100–108

    Article  Google Scholar 

  50. Joseph PM, Spital RD (1982) The effects of scatter in x-ray computed tomography. Med Phys 9(4):464–472. https://doi.org/10.1118/1.595111

    Article  Google Scholar 

  51. Kachelriess M (2013) Iterative reconstruction techniques: What do they mean for cardiac CT? Curr Cardiovasc Imaging Rep 6(3):268–281

    Article  Google Scholar 

  52. Kachelriess M (2013) Interesting detector shapes for third generation CT scanners. Med Phys 40(3):31101. https://doi.org/10.1118/1.4789588

    Article  Google Scholar 

  53. Kachelriess M, Kalender WA (1998) Electrocardiogram-correlated image reconstruction from subsecond spiral computed tomography scans of the heart. Med Phys 25(12):2417–2431. https://doi.org/10.1118/1.598453

    Article  Google Scholar 

  54. Kachelriess M, Kalender WA (2005) Improving PET/CT attenuation correction with iterative CT beam hardening correction. In. Record, Bd. 2005. IEEE, Nuclear Science Symposium Conference, S 5

    Google Scholar 

  55. Kachelriess M, Schaller S, Kalender WA (2000) Advanced single-slice rebinning in cone-beam spiral CT. Med Phys 27(4):754–772. https://doi.org/10.1118/1.598938

    Article  Google Scholar 

  56. Kachelriess M, Fuchs T, Schaller S, Kalender WA (2001) Advanced single-slice rebinning for tilted spiral cone-beam CT. Med Phys 28(6):1033–1041. https://doi.org/10.1118/1.1373675

    Article  Google Scholar 

  57. Kachelriess M, Watzke O, Kalender WA (2001) Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT. Med Phys 28(4):475–490. https://doi.org/10.1118/1.1358303

    Article  Google Scholar 

  58. Kachelriess M, Knaup M, Kalender WA (2004) Extended parallel backprojection for standard 3D and phase–correlated 4D axial and spiral cone–beam CT with arbitrary pitch and 100 % dose usage. Med Phys 31(6):1623–1641

    Article  Google Scholar 

  59. Kachelriess M, Knaup M, Penssel C, Kalender WA (2006) Flying focal spot (FFS) in cone-beam CT. Ieee Trans Nucl Sci 53(3):1238–1247

    Article  ADS  Google Scholar 

  60. Kachelriess M, Sourbelle K, Kalender WA (2006) Empirical cupping correction: a first-order raw data precorrection for cone-beam computed tomography. Med Phys 33(5):1269–1274. https://doi.org/10.1118/1.2188076

    Article  Google Scholar 

  61. Kaczmarz S (1937) Angenäherte Auflösung von Systemen Linearer Gleichungen. Bull Acad Polon Sci Lett A 35:335–357

    MATH  Google Scholar 

  62. Kak AC, Slaney M (1988) Principles of computerized tomographic imaging. IEEE press

    MATH  Google Scholar 

  63. Kalender WA, Seissler W, Klotz E, Vock P (1990) Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology 176(1):181–183. https://doi.org/10.1148/radiology.176.1.2353088

    Article  Google Scholar 

  64. Kalender WA, Wolf H, Suess C (1999) Dose reduction in CT by anatomically adapted tube current modulation. II. Phantom measurements. Med Phys 26(11):2248–2253. https://doi.org/10.1118/1.598738

    Article  Google Scholar 

  65. Kappler S, Henning A, Krauss B, Schoeck F, Stierstorfer K, Weidinger T, Flohr T (2013) Multi-energy performance of a research prototype CT scanner with small-pixel counting detector. In: SPIE Medical Imaging, 2013. International Society for Optics and Photonics, S 86680O-86680O-86688

    Google Scholar 

  66. Katsevich A (2002) Theoretically exact filtered backprojection-type inversion algorithm for spiral CT. Siam J Appl Math 62(6):2012–2026. https://doi.org/10.1137/S0036139901387186

    Article  MathSciNet  MATH  Google Scholar 

  67. Katsevich A (2004) An improved exact filtered backprojection algorithm for spiral computed tomography. Adv Appl Math 32(4):681–697. https://doi.org/10.1016/S0196-8858(03)00099-X

    Article  MathSciNet  Google Scholar 

  68. Kijewski PK, Bjarngard BE (1978) Correction for beam hardening in computed tomography. Med Phys 5(3):209–214. https://doi.org/10.1118/1.594429

    Article  Google Scholar 

  69. Koenig T, Schulze J, Zuber M, Rink K, Butzer J, Hamann E, Cecilia A, Zwerger A, Fauler A, Fiederle M, Oelfke U (2012) Imaging properties of small-pixel spectroscopic x-ray detectors based on cadmium telluride sensors. Phys Med Biol 57(21):6743–6759. https://doi.org/10.1088/0031-9155/57/21/6743

    Article  Google Scholar 

  70. Krauss B, Grant KL, Schmidt BT, Flohr TG (2015) The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency. Invest Radiol 50(2):114–118. https://doi.org/10.1097/RLI.0000000000000109

    Article  Google Scholar 

  71. Kuchenbecker S, Faby S, Sawall S, Lell M, Kachelriess M (2015) Dual energy CT: how well can pseudo-monochromatic imaging reduce metal artifacts? Med Phys 42(2):1023–1036

    Article  Google Scholar 

  72. Kyriakou Y, Kachelriess M, Knaup M, Krause JU, Kalender WA (2006) Impact of the z-flying focal spot on resolution and artifact behavior for a 64-slice spiral CT scanner. Eur Radiol 16(6):1206–1215. https://doi.org/10.1007/s00330-005-0118-9

    Article  Google Scholar 

  73. Kyriakou Y, Meyer E, Prell D, Kachelriess M (2010) Empirical beam hardening correction (EBHC) for CT. Med Phys 37(10):5179–5187. https://doi.org/10.1118/1.3477088

    Article  Google Scholar 

  74. Lell MM, Meyer E, Schmid M, Raupach R, May MS, Uder M, Kachelriess M (2013) Frequency split metal artefact reduction in pelvic computed tomography. Eur Radiol 23(8):2137–2145. https://doi.org/10.1007/s00330-013-2809-y

    Article  Google Scholar 

  75. Lell MM, Wildberger JE, Alkadhi H, Damilakis J, Kachelriess M (2015) Evolution in computed tomography: the battle for speed and dose. Invest Radiol 50(9):629–644. https://doi.org/10.1097/RLI.0000000000000172

    Article  Google Scholar 

  76. Lemmens C, Faul D, Nuyts J (2009) Suppression of metal artifacts in CT using a reconstruction procedure that combines MAP and projection completion. Ieee Trans Med Imaging 28(2):250–260

    Article  Google Scholar 

  77. Leng S, Zhao K, Qu M, An KN, Berger R, McCollough CH (2011) Dynamic CT technique for assessment of wrist joint instabilities. Med Phys 38(Suppl 1):50. https://doi.org/10.1118/1.3577759

    Article  Google Scholar 

  78. Mahnken AH, Raupach R, Wildberger JE, Jung B, Heussen N, Flohr TG, Gunther RW, Schaller S (2003) A new algorithm for metal artifact reduction in computed tomography: in vitro and in vivo evaluation after total hip replacement. Invest Radiol 38(12):769–775. https://doi.org/10.1097/01.rli.0000086495.96457.54

    Article  Google Scholar 

  79. Mail N, Moseley DJ, Siewerdsen JH, Jaffray DA (2008) An empirical method for lag correction in cone-beam CT. Med Phys 35(11):5187–5196. https://doi.org/10.1118/1.2977759

    Article  Google Scholar 

  80. De Man B, Nuyts J, Dupont P, Marchal G, Suetens P (2001) An iterative maximum-likelihood polychromatic algorithm for CT. Ieee Trans Med Imaging 20(10):999–1008. https://doi.org/10.1109/42.959297

    Article  Google Scholar 

  81. McCollough CH, Bruesewitz MR, Kofler JM Jr. (2006) CT dose reduction and dose management tools: overview of available options. Radiographics 26(2):503–512. https://doi.org/10.1148/rg.262055138

    Article  Google Scholar 

  82. McDavid WD, Waggener RG, Payne WH, Dennis MJ (1975) Spectral effects on three-dimensional reconstruction from rays. Med Phys 2(6):321–324. https://doi.org/10.1118/1.594200

    Article  Google Scholar 

  83. McDavid WD, Waggener RG, Payne WH, Dennis MJ (1977) Correction for spectral artifacts in cross-sectional reconstruction from x rays. Med Phys 4(1):54–57. https://doi.org/10.1118/1.594302

    Article  Google Scholar 

  84. McLoughlin RF, Ryan MV, Heuston PM, McCoy CT, Masterson JB (1992) Quantitative analysis of CT brain images: a statistical model incorporating partial volume and beam hardening effects. Br J Radiol 65(773):425–430. https://doi.org/10.1259/0007-1285-65-773-425

    Article  Google Scholar 

  85. Meagher JM, Mote CD, Skinner HB (1990) CT image correction for beam hardening using simulated projection data. Ieee Trans Nucl Sci 37(4):1520–1524. https://doi.org/10.1109/23.55865

    Article  ADS  Google Scholar 

  86. Meyer E, Raupach R, Lell M, Schmidt B, Kachelriess M (2010) Normalized metal artifact reduction (NMAR) in computed tomography. Med Phys 37(10):5482–5493. https://doi.org/10.1118/1.3484090

    Article  ADS  Google Scholar 

  87. Meyer E, Raupach R, Lell M, Schmidt B, Kachelriess M (2012) Frequency split metal artifact reduction (FSMAR) in computed tomography. Med Phys 39(4):1904–1916. https://doi.org/10.1118/1.3691902

    Article  ADS  Google Scholar 

  88. Moore BM, Brady SL, Mirro AE, Kaufman RA (2014) Size-specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations. Med Phys 41(7):71917. https://doi.org/10.1118/1.4884227

    Article  Google Scholar 

  89. Nalcioglu O, Lou RY (1979) Post-reconstruction method for beam hardening in computerised tomography. Phys Med Biol 24(2):330–340

    Article  Google Scholar 

  90. Newell JD Jr, Fuld MK, Allmendinger T, Sieren JP, Chan K-S, Guo J, Hoffman EA (2015) Very low-dose (0.15 mGy) chest CT protocols using the COPDGene 2 test object and a third-generation dual-source CT scanner with corresponding third-generation iterative reconstruction software. Invest Radiol 50(1):40

    Article  Google Scholar 

  91. Newman B, Callahan MJ (2011) ALARA (as low as reasonably achievable) CT 2011 – executive summary. Pediatr Radiol 41:453–455

    Article  Google Scholar 

  92. Ohnesorge B, Flohr T, Klingenbeck-Regn K (1999) Efficient object scatter correction algorithm for third and fourth generation CT scanners. Eur Radiol 9(3):563–569. https://doi.org/10.1007/s003300050710

    Article  Google Scholar 

  93. Ohnesorge B, Flohr T, Schwarz K, Heiken JP, Bae KT (2000) Efficient correction for CT image artifacts caused by objects extending outside the scan field of view. Med Phys 27(1):39–46. https://doi.org/10.1118/1.598855

    Article  Google Scholar 

  94. O’Sullivan JD (1985) A fast sinc function gridding algorithm for fourier inversion in computer tomography. Ieee Trans Med Imaging 4(4):200–207. https://doi.org/10.1109/TMI.1985.4307723

    Article  Google Scholar 

  95. Pantos I, Thalassinou S, Argentos S, Kelekis N, Panayiotakis G, Efstathopoulos E (2014) Adult patient radiation doses from non-cardiac CT examinations: a review of published results. Br J Radiol 84(1000):293–303

    Article  Google Scholar 

  96. Petersilka M, Stierstorfer K, Bruder H, Flohr T (2010) Strategies for scatter correction in dual source CT. Med Phys 37(11):5971–5992. https://doi.org/10.1118/1.3504606

    Article  Google Scholar 

  97. Prell D, Kyriakou Y, Kalender WA (2009) Comparison of ring artifact correction methods for flat-detector CT. Phys Med Biol 54(12):3881–3895. https://doi.org/10.1088/0031-9155/54/12/018

    Article  Google Scholar 

  98. Ramachandran GN, Lakshminarayanan AV (1971) Three-dimensional reconstruction from radiographs and electron micrographs: application of convolutions instead of Fourier transforms. Proc Natl Acad Sci U S A 68(9):2236–2240

    Article  ADS  MathSciNet  Google Scholar 

  99. Ritchie CJ, Crawford CR, Godwin JD, King KF, Kim Y (1996) Correction of computed tomography motion artifacts using pixel-specific back-projection. Ieee Trans Med Imaging 15(3):333–342. https://doi.org/10.1109/42.500142

    Article  Google Scholar 

  100. Ritschl L, Bergner F, Fleischmann C, Kachelriess M (2010) Water calibration for CT scanners with tube voltage modulation. Phys Med Biol 55(14):4107–4117. https://doi.org/10.1088/0031-9155/55/14/010

    Article  Google Scholar 

  101. Ritschl L, Bergner F, Fleischmann C, Kachelriess M (2011) Improved total variation-based CT image reconstruction applied to clinical data. Phys Med Biol 56(6):1545–1561. https://doi.org/10.1088/0031-9155/56/6/003

    Article  Google Scholar 

  102. Ritschl L, Kuntz J, Fleischmann C, Kachelriess M (2016) The rotate-plus-shift C-arm trajectory. Part I. Complete data with less than 180 degrees rotation. Med Phys 43(5):2295. https://doi.org/10.1118/1.4944785

    Article  Google Scholar 

  103. La Rivière PJ, Billmire DM (2005) Reduction of noise-induced streak artifacts in X-ray computed tomography through spline-based penalized-likelihood sinogram smoothing. Ieee Trans Med Imaging 24(1):105–111

    Article  Google Scholar 

  104. Robertson DD Jr, Huang H (1986) Quantitative bone measurements using x-ray computed tomography with second-order correction. Med Phys 13(4):474–479

    Article  Google Scholar 

  105. Rohkohl C, Bruder H, Stierstorfer K, Flohr T (2013) Improving best-phase image quality in cardiac CT by motion correction with MAM optimization. Med Phys 40(3):31901. https://doi.org/10.1118/1.4789486

    Article  Google Scholar 

  106. Ruth C, Joseph PM (1995) A comparison of beam-hardening artifacts in x-ray computerized tomography with gadolinium and iodine contrast agents. Med Phys 22(12):1977–1982. https://doi.org/10.1118/1.597495

    Article  Google Scholar 

  107. Schaller S, Stierstorfer K, Bruder H, Kachelriess M, Flohr T (2001) (2001) Novel approximate approach for high-quality image reconstruction in helical cone-beam CT at arbitrary pitch. In. Imaging, Bd. 2001. Medical, International Society for Optics and Photonics, S 113–127

    Google Scholar 

  108. Schardt P, Deuringer J, Freudenberger J, Hell E, Knupfer W, Mattern D, Schild M (2004) New x-ray tube performance in computed tomography by introducing the rotating envelope tube technology. Med Phys 31(9):2699–2706. https://doi.org/10.1118/1.1783552

    Article  Google Scholar 

  109. Schlomka JP, Roessl E, Dorscheid R, Dill S, Martens G, Istel T, Baumer C, Herrmann C, Steadman R, Zeitler G, Livne A, Proksa R (2008) Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Phys Med Biol 53(15):4031–4047. https://doi.org/10.1088/0031-9155/53/15/002

    Article  Google Scholar 

  110. Schmidt T, Behling R (2000) MRC: a successful platform for future X-ray tube development. Medica Mundi 44(2):50–55

    Google Scholar 

  111. Schomberg H (2004) Image reconstruction from truncated cone-beam projections. In: Biomedical Imaging: Nano to Macro, 2004 IEEE International Symposium on, 2004, S 575–578

    Google Scholar 

  112. Schöndube H, Allmendinger T, Stierstorfer K, Bruder H, Flohr T (2011) Evaluation of a novel CT image reconstruction algorithm with enhanced temporal resolution. In: SPIE Medical Imaging, 2011 International Society for Optics and Photonics, S 79611N-79611N-79617

    Google Scholar 

  113. Shrimpton P (2004) Assessment of patient dose in CT: European guidelines for multislice computed tomography funded by the European Commission 2004: contract number FIGMCT2000-20078-CT-TIP. European Commission, Luxembourg

    Google Scholar 

  114. Shrimpton P, Hillier M, Lewis M, Dunn M (2005) Doses from computed tomography (CT) examinations in the UK-2003 review. NRPB 67:

    Google Scholar 

  115. Shrimpton P, Hillier M, Lewis M, Dunn M (2014) National survey of doses from CT in the UK: 2003. Br J Radiol 79(948):968–980

    Article  Google Scholar 

  116. Sidky EY, Pan X (2008) Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys Med Biol 53(17):4777–4807. https://doi.org/10.1088/0031-9155/53/17/021

    Article  Google Scholar 

  117. Sidky EY, Kao CM, Pan XH (2006) Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. J Xray Sci Technol 14(2):119–139

    Google Scholar 

  118. Sourbelle K, Kachelriess M, Kalender WA (2005) Reconstruction from truncated projections in CT using adaptive detruncation. Eur Radiol 15(5):1008–1014. https://doi.org/10.1007/s00330-004-2621-9

    Article  Google Scholar 

  119. Spies L, Luhta R (2005) Characterization and correction of temporal artifacts in CT. Med Phys 32(7):2222–2230. https://doi.org/10.1118/1.1929147

    Article  Google Scholar 

  120. Starman J, Star-Lack J, Virshup G, Shapiro E, Fahrig R (2012) A nonlinear lag correction algorithm for a-Si flat-panel x-ray detectors. Med Phys 39(10):6035–6047. https://doi.org/10.1118/1.4752087

    Article  Google Scholar 

  121. Stenner P, Kachelriess M (2008) Dual energy exposure control (DEEC) for computed tomography: algorithm and simulation study. Med Phys 35(11):5054–5060. https://doi.org/10.1118/1.2982150

    Article  Google Scholar 

  122. van Stevendaal U, von Berg J, Lorenz C, Grass M (2008) A motion-compensated scheme for helical cone-beam reconstruction in cardiac CT angiography. Med Phys 35(7):3239–3251. https://doi.org/10.1118/1.2938733

    Article  Google Scholar 

  123. Stierstorfer K, Rauscher A, Boese J, Bruder H, Schaller S, Flohr T (2004) Weighted FBP – a simple approximate 3D FBP algorithm for multislice spiral CT with good dose usage for arbitrary pitch. Phys Med Biol 49(11):2209–2218. https://doi.org/10.1088/0031-9155/49/11/007

    Article  Google Scholar 

  124. Stonestrom JP, Alvarez RE, Macovski A (1981) A framework for spectral artifact corrections in x-ray CT. Ieee Trans Biomed Eng 28(2):128–141. https://doi.org/10.1109/TBME.1981.324786

    Article  Google Scholar 

  125. Taguchi K, Kudo H (2008) Motion compensated fan-beam reconstruction for nonrigid transformation. Ieee Trans Med Imaging 27(7):907–917. https://doi.org/10.1109/TMI.2008.925076

    Article  Google Scholar 

  126. Taguchi K, Zhang M, Frey EC, Wang X, Iwanczyk JS, Nygard E, Hartsough NE, Tsui BM, Barber WC (2011) Modeling the performance of a photon counting x-ray detector for CT: energy response and pulse pileup effects. Med Phys 38(2):1089–1102. https://doi.org/10.1118/1.3539602

    Article  Google Scholar 

  127. Tang Q, Cammin J, Srivastava S, Taguchi K (2012) A fully four-dimensional, iterative motion estimation and compensation method for cardiac CT. Med Phys 39(7):4291–4305. https://doi.org/10.1118/1.4725754

    Article  Google Scholar 

  128. Tang SJ, Mou XQ, Xu Q, Zhang YB, Bennett J, Yu HY (2011) Data consistency condition-based beam-hardening correction. Optical Engineering 50 (7):076501-076501-076513. https://doi.org/10.1117/1.3599869

    Article  ADS  Google Scholar 

  129. Tang X, Hsieh J, Hagiwara A, Nilsen RA, Thibault JB, Drapkin E (2005) A three-dimensional weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT under a circular source trajectory. Phys Med Biol 50(16):3889–3905. https://doi.org/10.1088/0031-9155/50/16/016

    Article  Google Scholar 

  130. Thibault JB, Sauer KD, Bouman CA, Hsieh J (2007) A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys 34(11):4526–4544. https://doi.org/10.1118/1.2789499

    Article  Google Scholar 

  131. Tuy HK (1983) An Inversion-Formula for Cone-Beam Reconstruction. SIAM J Appl Math 43(3):546–552. https://doi.org/10.1137/0143035

    Article  MathSciNet  Google Scholar 

  132. Veldkamp WJ, Joemai RM, van der Molen AJ, Geleijns J (2010) Development and validation of segmentation and interpolation techniques in sinograms for metal artifact suppression in CT. Med Phys 37(2):620–628. https://doi.org/10.1118/1.3276777

    Article  Google Scholar 

  133. Wang G, Snyder DL, O’Sullivan JA, Vannier MW (1996) Iterative deblurring for CT metal artifact reduction. Ieee Trans Med Imaging 15(5):657–664. https://doi.org/10.1109/42.538943

    Article  Google Scholar 

  134. Watzke O, Kachelriess M, Kalender W (2001) A pragmatic approach to metal artifact correction in medical CT. In: Radiology, 2001. Radiological SOC North America 820 Jorie Blvd, Oak Brook, IL 60523 USA, S 544–545

    Google Scholar 

  135. Wei J, Chen L, Sandison GA, Liang Y, Xu LX (2004) X-ray CT high-density artefact suppression in the presence of bones. Phys Med Biol 49(24):5407–5418

    Article  Google Scholar 

  136. Yu L, Li H, Mueller J, Kofler JM, Liu X, Primak AN, Fletcher JG, Guimaraes LS, Macedo T, McCollough CH (2009) Metal artifact reduction from reformatted projections for hip prostheses in multislice helical computed tomography: techniques and initial clinical results. Invest Radiol 44(11):691–696. https://doi.org/10.1097/RLI.0b013e3181b0a2f9

    Article  Google Scholar 

  137. Zou Y, Pan XC, Sidky EY (2005) Theory and algorithms for image reconstruction on chords and within regions of interest. J Opt Soc Am A 22(11):2372–2384. https://doi.org/10.1364/Josaa.22.002372

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Kachelrieß .

Editor information

Editors and Affiliations

Aufgaben

Aufgaben

8.1

Welchem CT-Wert entspricht der Schwächungswert von 0,00205 mm\({}^{{-}1}\) bei 70 keV? Tipp: Rechnen Sie mit dem Schwächungswert von Wasser bei 70 keV, den Sie im Text finden. Um welches Organ handelt es sich, wenn man Tab. 8.2 zugrunde legt? Ist diese Vorgehensweise gerechtfertigt, um ein Organ zu identifizieren?

8.2

Welche Methoden zur Dosissenkung kann der Anwender selbst vornehmen?

8.3

Ein Notfallpatient wird mit starken Brustschmerzen in die Klinik eingeliefert. Zum Ausschluss eines Aortenaneurysmas wird vom behandelnden Arzt ein CT veranlasst. Der zuständige Radiologe wählt hierfür ein Thoraxprotokoll aus. Gescannt wird ein Bereich von 40 cm vom Hals an abwärts. Das verwendete Gerät akquiriert im Thoraxprotokoll 64 Schichten zu je 0,6 mm. Die Scandauer beträgt 2 s, die Rotationszeit 250 ms. Berechnen Sie den Pitchwert des Scans.

8.4

Das Gerät hat während des in Frage 3 beschriebenen Scans eine Leistung von 100 kW bei einer Röhrenspannung von 80 kV. Berechnen Sie das Röhrenstrom-Zeit-Produkt und das effektive Röhrenstrom-Zeit-Produkt. Wie hängt das effektive Röhrenstrom-Zeit-Produkt mit der Strahlendosis zusammen?

8.5

Erläutern Sie folgende Begriffe: \(\text{CTDI}_{100}\), \(\text{CTDI}_{\mathrm{w}}\), \(\text{CTDI}_{\mathrm{vol}}\), SSDE. Wie werden diese bestimmt (berechnet)?

8.6

Bei einer Untersuchung sehen Sie, wie der behandelnde Radiologe an der CT-Konsole folgende Werte setzt: „\(C=300\) HU, \(W=1600\) HU“. Welchen CT-Wertebereich deckt er damit ab? Welche Farbe hat beispielsweise ein Voxel mit 1300 HU? Sie wollen stattdessen einen Graustufenbereich von \({-}\)250 HU bis 500 HU abdecken. Wie fenstern Sie?

8.7

Wie wirkt sich die Röhrenspannung auf die Patientendosis aus? Warum ist es wichtig, bei einer Erhöhung der Röhrenspannung auch das effektive Röhrenstrom-Zeit-Produkt anzupassen? Muss dieses erhöht oder erniedrigt werden?

8.8

Welche Möglichkeiten der Dosisreduktion können hardware- und softwareseitig erreicht werden? Nennen Sie einige.

8.9

Zählen Sie einige Artefakttypen und ihre Korrekturmöglichkeiten auf.

8.10

Erklären Sie den Unterschied zwischen pixelgetriebener und strahlgetriebener Rückprojektion. Welche Rekonstruktionstechniken kennen Sie und was unterscheidet sie voneinander? Schreiben Sie die jeweiligen Lösungsansätze auf und erläutern Sie die Parameter.

8.11

Zählen Sie die Komponenten des CT-Geräts auf und beschreiben Sie jeweils die Funktionsweise der Komponenten. Wofür steht DSCT, DECT? Was sind die Vorteile?

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kachelrieß, M. (2018). Computertomographie. In: Schlegel, W., Karger, C., Jäkel, O. (eds) Medizinische Physik. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54801-1_8

Download citation

Publish with us

Policies and ethics