Skip to main content

Die Ursprünge des Lebendigen

  • Chapter
  • First Online:
Lebensraum Universum
  • 1707 Accesses

Zusammenfassung

Viele Wege führen zum Leben – Reaktion für Reaktion werden die abiotischen Grundlagen der allerersten ökologischen Interaktionen entschlüsselt. Das kleinstmögliche Leben birgt indes das Potential, alles, was wir über unsere Erde und ferne Welten zu wissen glauben, größtmöglich zu verändern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Pasteur L (1864) On spontaneous generation: An adress delivered by Louis Pasteur at the „Sorbonne Scientific Soiree“ of April 7, 1864. Revue des cours scientifics I (1863–1864):257–264. Englische Übersetzung mitsamt handschriftlichen Korrekturen von Pasteur im Auftrag von Bruno Latour, Copyright Alex Levine 1993

    Google Scholar 

  2. Madigan MT, Martinko JM (2006) Brock Mikrobiologie, 11. Aufl. Pearson Studium, München, S 14f

    Google Scholar 

  3. Penalosa J (1983) Shoot dynamics and adaptive morphology of Ipomoea phillomega (Vell.) House (Convolvulaceae), a Tropical Rainforest Liana. Ann Bot 52(5), 737–754. (u.A. in Silvertown, J, Charlesworth D (2001) Plant Population Biology 13. Blackwell Publishing, Malden.)

    Google Scholar 

  4. Mancuso S, Viola A (2015) Die Intelligenz der Pflanzen. Verlag Antje Kunstmann GmbH, München, 50–55

    Google Scholar 

  5. Schuergers N, Lenn T, Kampmann R et al (2016) Cyanobacteria use micro-optics to sense light direction. eLife 5. doi:10.7554/eLife.12620

  6. Wilhelm K (2015) Bakterien brauchen Partner. Max Planck Forschung – Das Wissenschaftsmagazin der Max-Planck-Gesellschaft, vierte Ausgabe (2015), 62–68

    Google Scholar 

  7. Erez Z, Steinberger-Levy I, Shamir M et al (2017) Communication between viruses guides lysis-lysogeny decisions. Nature 541:488–493. doi:10.1038/nature21049

    Article  Google Scholar 

  8. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14(8):e1002533. doi:101371/journal/pbio.1002533

    Article  Google Scholar 

  9. Cho I, Blaser MJ (2012) The human microbiome: At the interface of health and disease. Nat Rev Genet 13:260–270. doi:10.1038/nrg3182

    Google Scholar 

  10. Baque M, De Vera J-P, Rettberg P et al (2013) The BOSS and BIOMEX space experiments on the EXPOSE-R2 mission: Endurance of the desert cyanobacterium Chroococcidiopsis under simulated space vacuum, Martian atmosphere, UVC radiation and temperature extremes. Acta Astronaut 91:180–186. doi:10.1016/j.actaastro.2013.05.015

    Article  Google Scholar 

  11. Lüllmann-Rauch & Paulsen F (2012) Taschenlehrbuch Histologie, 4. Aufl., S. 179. Thieme Verlagsgruppe, Stuttgart

    Google Scholar 

  12. Darwin F (1887) The life and letters of Charles Darwin. Vol. 3.John Murray, London, 18. Viele Werke und Briefe Darwins wurden von seinem Sohn Francis Darwin veröffentlicht und sind heute online verfügbar unter darwin-online.org.uk

    Google Scholar 

  13. Oparin A (1947) Die Entstehung des Lebens auf der Erde. Volk und Wissen, Berlin. 1924 erschien die russische Originalliteratur: Oparin A., Proiskhozhdenie zhizny, Izd. Moskovhii RabochiI, Moskau.

    Google Scholar 

  14. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117(3046):528f

    Article  Google Scholar 

  15. Altwegg K, Balsiger H, Bar-Nun A et al (2016) Prebiotic chemicals – amino acids and phosphorus – in the coma of comet 67/PChuryumov-Gerasimenko. Sci Adv 2(5):e1600285. doi:10.1126/sciadv.1600285

    Article  Google Scholar 

  16. Morris PW, Gupta H, Nagy Z et al (2016) Herschel/HIFI spectral mapping of C+, CH+, and CH in Orion BN/KL: The prevailing role of ultraviolet irradiation in CH+ formation. Astrophys J 829(1). doi:10.3847/0004-637X/829/1/15

  17. Wächtershäuser G (1992) Groundworks for an evolutionary biochemistry: The iron-sulphur world. Prog Biophys Mol Biol 58(2):85–201

    Article  Google Scholar 

  18. Schröder T (2016) „Der Tiefsee auf den Grund gehen“. Max Planck Forschung – Das Wissenschaftsmagazin der Max-Planck-Gesellschaft, zweite Ausgabe 2016, 64.

    Google Scholar 

  19. Boetius A (2005) Lost city life. Science 307(5714):1420–1422. doi:10.1126/science.1109849

    Article  Google Scholar 

  20. Blöchl E, Keller M, Wächtershäuser G et al (1992) Reactions depending on iron sulfide and linking geochemistry with biochemistry. Proc Natl Acad Sci USA 89:8117–8120

    Article  Google Scholar 

  21. Wächtershäuer G (1988) Pyrite formation, the first energy source for life: A hypothesis. Syst Appl Microbiol 10(3):207–120

    Article  Google Scholar 

  22. Gilbert W (1986) The RNA world. Nature 319(6055):618. doi:10.1038/319618a0

    Article  Google Scholar 

  23. Tinoco I Jr., Bustamante C (1999) How RNA folds. J Mol Biol 293(2):271–281

    Article  Google Scholar 

  24. Altman S (1990) Enzymatic cleavage of RNA by RNA. Nobel-Vortrag, Stockholm, S. 25f

    Google Scholar 

  25. Cech TR (1990) Self-splicing and enzymatic activity of an intervening sequence RNA from Tetrahymena Nobel-Vortrag, Stockholm, S. 40f

    Google Scholar 

  26. Powner MW, Gerland, B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242. doi:10.1038/nature08013

    Article  Google Scholar 

  27. Jewett MC, Fritz BR, Timmerman LE et al (2013) In vitro integration of ribosomal RNA synthesis ribosome assembly, and translation. Mol Syst Biol 9:678. doi:10.1038/msb.2013.31

    Article  Google Scholar 

  28. Becker S, Thoma I, Deutsch A et al (2016) A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway. Science 352(6287):833–836. doi:10.1126/science.aad2808

    Article  Google Scholar 

  29. Toyota T, Maru N, Hanczyc MM et al (2009) Self-propelled oil droplets consuming >fuel< surfactant. J. Am Chem Soc 131(14):5012f. doi:10.1021/ja806689p

    Article  Google Scholar 

  30. Koonin EV, Dolja VV (2014) Virus world as an evolutionary network of viruses and capsidless selfish elements. Microbiol Mol Biol Rev 78(2):278–303. 10.1128/MMBR.00049-13

    Article  Google Scholar 

  31. Forterre P (2006) The origin of viruses and their possible roles in major evolutionary transitions. Virus Res 117(1):5–16. doi:10.1016/j.virusres.2006.01.010

    Article  Google Scholar 

  32. Altwegg K, Balsiger H, Bar-Nun A et al (2015) 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347(6220). doi:10.1126/science.1261952

  33. Horowitz NH et al (1976) The Viking carbon assimilation experiments: Interim report. Science 194(4721):1321f. doi:10.1126/science.194.4271.1321

    Article  Google Scholar 

  34. Klein HP et al (1976) The viking biological investigation: Preliminary results. Science 194(4260):99–105. doi:10.1126/science.194.4260.99

    Article  Google Scholar 

  35. Khurana KK et al (1998) Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395:777–780. doi:10.1038/27394

    Article  Google Scholar 

  36. Tyler RH (2008) Strong ocean tidal flow and heating on moons of the outer planets. Nature 456:770–772. doi:10.1038/nature07571

    Article  Google Scholar 

  37. Iess L et al (2014) The gravity field and interior structure of enceladus. Science 344(6179):78–80. doi:10.1126/science.1250551

    Article  Google Scholar 

  38. Postberg F, Kempf S, Schmidt J et al (2009) Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459:1098–1101. doi:10.1038/nature08046

    Article  Google Scholar 

  39. Postberg F, Schmidt J, Hillier J et al (2011) A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474:620–622. doi:10.1038/nature10175

    Article  Google Scholar 

  40. Hsu H-W, Postberg F, Sekine Y et al (2015) Ongoing hydrothermal activities within Enceladus. Nature 519:207–210. doi:10.1038/nature14262

    Article  Google Scholar 

  41. Bundesministerium für Bildung und Forschung (2016) Wurde schon einmal beobachtet, wie Tiefseebewohner in heiße Quellen geraten?. Projektgruppe Wissenschaftsjahr 2016*2017, Nennung der Arbeit und ihrer Ergebnisse unter. https://www.wissenschafts jahr.de/2016–17/aktuelles/blaues-telefon/wurde-schon-einmal-beobachtet-wie-tiefseebewohner-in-heisse-quellen-geraten.html. Zugegriffen: 09. Dez. 2016

  42. Masahiro O (2016) Journey to the center of Icy Moons. Nennung der Ideen im Vortrag des NASA Jet Propulsion Laboratory auf dem NASA-Innovative-Advanced-Concepts-Symposium, Raleigh, North Carolina

    Google Scholar 

  43. Parness A, Frost M, Boston P et al (2012) Rock climbing robot for exploration and sample acquisition at lava tubes, steep slopes, and cliff walls. Nennung der Arbeit im Vortrag des NASA Jet Propulsion Laboratory auf dem NASA-Innovative-Advanced-Concepts-Symposium, Raleigh, North Carolina

    Google Scholar 

  44. Vago J, Witasse O, Baglioni P et al (2013) ExoMars: ESA’s next step in Mars exploration. Bulletin (European Space Agency) 155:12–23. Open access.http://esamultimedia.esa.int/multimedia/publications/ESA-Bulletin-155/offline/download.pdf. Zugegriffen: 09. Dez. 2016

  45. Treiman AH (o.J.) Groundbreaking sample return from Mars: The next giant leap in understanding the red planet. (A White Paper for the NRC Planetary Science Decadal Survey, Reflecting the Viewpoints of the NASA Analysis Group CAPTEM (Curation and Analysis Planning Team for Extraterrestrial Materials)), Open access. http://www.lpi.usra.edu/decadal/captem/AllanTreimanMars.pdf.Zugegriffen: 09. Dez. 2016

  46. Hammond NP, Barr AC, Parmentier EM (2016) Recent tectonic activity on Pluto driven by phase changes in the ice shell. Geophys Res Lett doi:10.1002/2016GL069220

    Google Scholar 

  47. Coustenis A (2008) Titan: Exploring an earthlike world. World Scientific, Singapur, 154–155

    Book  Google Scholar 

  48. Niemann HB, Atreya SK, Bauer SJ et al (2005) The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438(7069):779–784. doi:10.1038/nature04122

    Article  Google Scholar 

  49. European Space Agency (2005 ) Europe arrives at the New Frontier – The Huygens landing on Titan. ESA Bulletin 121. Open access. http://www.esa.int/esapub/bulletin/bulletin121/bul121a_lebreton.pdf. Zugegriffen: 19. März 2017

  50. Stofan ER (2007) The lakes of Titan. Nature 445:61–64. doi:10.1038/nature05438

    Article  Google Scholar 

  51. Malaska MJ, Hodyss R, Lunine JI et al (2017) Laboratory measurements of nitrogen dissolution in Titan lake fluids. Icarus 289:94-105. doi:10.1016/j.icarus.2017.01.033

    Article  Google Scholar 

  52. Raulin F (2005) Exo-astrobiological aspects of Europa and Titan: From observations to speculations. Space Sci Rev 116(1):471–486. doi:10.1007/s11214-005-1967-x

    Article  Google Scholar 

  53. Oleson SR (2016) Titan submarine: Exploring the depths of Kranken Mare. Nennung des Konzepts im Vortrag NASA Glenn Research Centers auf dem NASA-Innovative-Advanced-Concepts-Symposium, Raleigh, North Carolina

    Google Scholar 

  54. Hörst SM, Yelle RV, Buch A et al (2012) Formation of Amino acids and nucleotide bases in a Titan atmosphere simulation experiment. Astrobiology 12(9):809–817. doi:10.1089/ast.2011.0623

    Article  Google Scholar 

  55. Chance B, Nishimura M (1960) On the mechanism of chlorophyll-cytochrome interaction: The temperature insensitivity of light-induced cytochrome oxidation in chromatium. Proc Natl Acad Sci USA 46:19–25

    Article  Google Scholar 

  56. Strobel DF (2010) Molecular hydrogen in Titan’s atmosphere: Implications of the measured tropospheric and thermospheric mole fractions. Icarus 208(2):878–886. 10.1016/j.icarus.2010.03.003

    Article  Google Scholar 

  57. Niemann HB, Atreya SK, Demick JE et al (2010) Composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment. J Geophys Res 115:E12. 10.1029/2010JE003659

    Article  Google Scholar 

  58. Sagan C, Salpeter EE (1976) Particles, environments and possible ecologies in the Jovian atmosphere. Astrophys J Suppl 32:737–755

    Article  Google Scholar 

  59. Sokol J (2016) Alien life could thrive in the clouds of failed stars. Sciencemag (posted in: Space). doi:10.1126/science.aal0456, aufrufbar unter. http://www.sciencemag.org/news/2016/12/alien-life-could-thrive-clouds-failed-stars?utm_source=sciencemagazine&utm_medium=facebook-text&utm_campaign=alienlife-9531. Zugegriffen: 09. Dez. 2016

  60. Direkter Wortlaut übernommen von Michael Springer in seinem Beitrag Leben schon kurz nach dem Urknall – Im frühen Universum war es überall wohnlich in Spektrum der Wissenschaft. Ausgabe 02.2014, S. 20.

    Google Scholar 

  61. Loeb A (2013) The habitable epoche of the early universe. Int J Astrobiol 13(4):337–339. doi:10.1017/S1473550414000196

    Article  Google Scholar 

  62. Boetius A, Ravenschlag K, Schubert CJ et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 46:623–626. doi:10.1038/35036572

    Article  Google Scholar 

  63. Wolfe-Simon F, Switzer Blum J, Kulp TR et al (2010) A Bacterium that can grow by using arsenic instead of phosphorus. Science 323(6034):1163–1166. doi:10.1126/science.1197258. (Dieses Paper wurde, wie im Text vermerkt, aufgrund schwerwiegender Fehler zurückgezogen!)

    Google Scholar 

  64. Janjic A (2016) Many first cells hypothesis and continuous abiogenesis, vor Veröffentlichung. Open access. https://www.researchgate.net/publication/308690642_Many_first_cells_hypothesis_and_continuous_abiogenesis. Zugegriffen: 19. Dez. 2016

  65. Karr JR, Sanghvi JC, Macklin DN et al (2012) A Whole-Cell Computational Model Predicts Phenotype from Genotype. Cell 150(2):389-401. doi:10.1016/j.cell.2012.05.044

    Article  Google Scholar 

  66. Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Verlag GmbH Deutschland

About this chapter

Cite this chapter

Janjic, A. (2017). Die Ursprünge des Lebendigen. In: Lebensraum Universum. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54787-8_3

Download citation

Publish with us

Policies and ethics