Skip to main content

Auf der Suche nach Signaturen des Lebens

  • Chapter
  • First Online:
Lebensraum Universum
  • 1726 Accesses

Zusammenfassung

Leben verändert abiotische Bedingungen und hinterlässt mitunter massive Spuren in der Umwelt – sei es durch Bakterien vor Milliarden von Jahren oder durch uns Menschen heute. Die Suche nach solchen Ökosignaturen auf fernen Welten hat bereits begonnen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Sagan C, Thompson WR, Carlson R et al (1993) A search for life on Earth from the Galileo spacecraft. Nature 365:715–721. doi: 10.1038/365715a0

    Article  Google Scholar 

  2. European Southern Observatory (ESO) (2004) Pressemitteilung und Foto aufrufbar unter. https://www.eso.org/public/images/26a_big-vlt/. Zugegriffen: 19. März 2017

  3. Schneider J, Roques F (2016) Interactive extrasolar planets catalog. The Extrasolar Planets Encyclopaedia, aufrufbar unter: exoplanet.eu. Zugegriffen: 19. März 2017

    Google Scholar 

  4. Lada CJ (2006) Stellar multiplicity and the IMF: Most stars are single. Astrophys J Lett 640:L63–L66. doi:10.1086/503158

    Article  Google Scholar 

  5. Anglada-Escudé G, Amado PJ, Barnes J et al (2016) A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536:437–440. doi: 10.1038/nature19106

    Article  Google Scholar 

  6. Udry S, Bonfils X, Delfosse X et al (2007) The HARPS search for southern extra-solar planets – XI: Super-Earths (5 and 8⊕)in a 3-planet system. Astron Astrophys 469(3):L43–L47. doi:10.1051/0004–6361: 20077612

    Article  Google Scholar 

  7. Robertson P, Mahadevan S, Endl M et al (2014) Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581. Science 345:440–444. doi: 10.1126/science.1253253

    Article  Google Scholar 

  8. Anglada-Escudé G, Tuomi M (2015) Comment on Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581. Science 347(6226):1080. doi: 10.1126/science.1260796

    Article  Google Scholar 

  9. Sumi T, Kamiya K, Abe F et al (2011) Unbound or distant planetary mass population detected by gravitational microlensing. Nature 473:349–352. doi: 10.1038/nature10092

    Article  Google Scholar 

  10. Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378:355–359. doi: 10.1038/378355a0

    Article  Google Scholar 

  11. Chou F, Johnson M (National Aeronautics and Space Administration) (2016) NASA’s Kepler mission announces largest collection of planets ever discovered. Presseveröffentlichung der NASA, aufrufbar unter. http://www.nasa.gov/press-release/nasas-kepler-mission-announces-largest-collection-of-planets-ever-discovered. Zugegriffen: 09. Dez. 2016

  12. Bonfils X, Hook R (European Southern Observatory) (2012) Many billions of rocky planets in the habitable zones around Red Dwarfs in the Milky Way. Presseveröffentlichung des ESO, aufrufbar unter. https://www.eso.org/public/news/eso1214/?lang#2. Zugegriffen: 09. Dez. 2016

  13. Babygin K, Brown ME (2016) Evidence for a distant giant planet in the solar system. Astronomical J 151:2. doi: 10.3847/0004–6256/151/2/22

    Google Scholar 

  14. Selsis F, Kasting JF, Levrard B et al (2007) Habitable planets around the star Gliese 581? Astron Astrophys 476(3):1373–1387. doi: 10.1051/0004–6361: 20078091

    Article  Google Scholar 

  15. Schulze-Makuch D, Méndez A, Fairén AGEA (2011) A two-tiered approach to assessing the habitability of exoplanets. Astrobiology 11(10):1041–1052. doi: 10.1089/ast.2010.0592

    Article  Google Scholar 

  16. Edson AR, Kasting JF, Pollard D et al (2012) The carbonate-silicate cycle and CO2/climate feedbacks on tidally locked terrestrial planets. Astrobiology 12(6):562–571. doi: 10.1089/ast. 2011.0762

    Article  Google Scholar 

  17. Conrad R (2009) The global methane cycle: Recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1(5):285–292. doi: 10.1111/j.1758–2229.2009.00038.x

    Article  Google Scholar 

  18. Formisano V, Atreya S, Encrenaz T et al (2004) Detection of methane in the atmosphere of mars. Science 306(5702):1758– 1761. doi: 10.1126/science.1101732

    Article  Google Scholar 

  19. Webster CR, Mahaffy PR, Atreya SK et al (2015) Mars methane detection and variability at Gale crater. Science 347(6220):415–417. doi: 10.1126/science.1261713

    Article  Google Scholar 

  20. Nisbet RER, Fisher R, Nimmo RH et al (2009) Emission of methane from plants. Proc Biol Sci. 276(1660):1347–1354. doi: 10.1098/rspb.2008.1731

    Article  Google Scholar 

  21. Sparks WB, DasSarma S, Reid IN (2007) Evolutionary competition between primitive photosynthetic systems: Existence of an early purple Earth? AAS/AAPT Joint Meeting, American Astronomical Society Meeting 209, id.06.05. BAAS 38:901

    Google Scholar 

  22. Oesterhelt D (1996) Photosynthese und Photorezeption in Halobakterien. Ber Bunsen-Ges Phys Chem 100(12):1943– 1949. doi: 10.1002/bbpc.19961001203

    Article  Google Scholar 

  23. Falkowski P (2012) Ocean science: The power of plankton. Nature 483:S17–S210. doi: 10.1038/483S17a

    Article  Google Scholar 

  24. Tyrrell T, Merico A (2004) Emiliana huxleyi: bloom observations and the conditions that induce them. In: Thierstein HR, Young JR (Hrgs) Coccolithophores – From molecular processes to global impact. Springer, Heidelberg, S 75–97

    Google Scholar 

  25. Flombaum P, Gallegos JL, Gordillo RA et al (2013) Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA 110(24):9824–9829. doi: 10.1073/pnas.1307701110

    Article  Google Scholar 

  26. Hoehler TM, Bebout BM, Des Marais DJ (2001) The role of microbial mats in the production of reduced gas on the early Earth. Nature 412:324–327. doi: 10.1038/35085554

    Article  Google Scholar 

  27. Kopp RE, Kirschvink JL, Hilburn IA et al (2005) The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci USA 102(32):11131–11136. doi: 10.1073/pnas.0504878102

    Article  Google Scholar 

  28. Southworth J, Mancini L, Madhusudhan N et al (2017) Detection of the Atmosphere of the 1.6 M⊕ Exoplanet GJ 1132 b. The Astronomical Journal 153(4):191. doi: 10.3847/1538-3881/aa6477

  29. European Space Agency (2013) How many space debris objects are currently in orbit? Presseveröffentlichung der ESA im Rahmen des Clean-Space-Konzepts, aufrufbar unter. www.esa.int/Our_Activities/Space_Enigineering_Technology/Clean_Space/How_many_space _debris_objects_are_currently_in_orbit. Zugegriffen: 09. Dez. 2016

  30. Crowe MJ (1986) The extraterrestrial life debate, 1750–1900. Cambridge University Press, Cambridge

    Google Scholar 

  31. Cook J-RC, Brown D (National Aeronautics and Space Administration) (2013) NASA spacecraft embarks on historic journey into interstellar space. Presseveröffentlichung der NASA, aufrufbar unter. www.jpl.nasa.gov/news/news.php?release=2013–277. Zugegriffen: 09. Dez. 2016

  32. Aktuelle Distanzen der Raumsonden Voyager 1 und Voyager 2 einsehbar unter: http://voyager.jpl.nasa.gov/where/. Zugegriffen: 19. März. 2017

  33. Flandro G (1966) Fast reconnaissance missions to the outer solar system using energy derived from the gravitational field of Jupiter. Astronautica Acta 12(4):329–337 Open Access unter: www.gravityassist.com/IAF3-2/Ref.%203-143.pdf, zuletzt aufgerufen am 09. Dezember 2016

    Google Scholar 

  34. Paris A, Davies E (2015) Hydrogen clouds from comets 266/P Christensen and P/2008 Y2 (Gibbs) are candidates for the source of the 1977 „WOW“ signal. J Washington Acad Sci 101(4):25–32

    Google Scholar 

  35. Dyson FJ (1960) Search for artificial stellar sources of infrared radiation. Science 131(3414):1667–1668. doi: 10.1126/science.131.3414.1667

    Article  Google Scholar 

  36. Boyajian TS, LaCourse DM, Rappaport SAEA (2015) Planet hunters IX. KIC 8462852 – Where’s the flux?. Mon Notices Royal Astron Soc 457(4):3988–4004. doi: 10.1093/mnras/stw218

    Article  Google Scholar 

  37. Schaefer BE (2016) KIC 8462852 faded at an average rate of 0.165+−0.013 magnitudes per century from 1890 to 1989. Astrophys J Lett 822(2). doi: 10.3847/2041–8205/822/2/L34

  38. Sheikh MA, Weaver RL, Dahmen KA (2016) Avalanche statistics identify intrinsic stellar processes near criticality in KIC 8462852. Phys Rev Lett 117:261101. doi:10.1103/PhysRevLett.117.261101

    Article  Google Scholar 

  39. Nutman AP, Bennett VC, Friend CRLEA (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537:535–538. doi:10.1038/nature19355

    Article  Google Scholar 

  40. Gillon M, Triaud AHMJ, Demory B-O et al (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542:456-460. doi:10.1038/nature21360

  41. Drake FD (1965) The radio search for intelligent extraterrestrial life. In: Mamikunian G, Briggs MH (Hrgs) Current aspects of exobiology. Pergamon Press, Oxford, S 323–346

    Chapter  Google Scholar 

  42. Milner J, Hawking S et al (2016) Breakthrough Starshot. Vortrag des Gründers Juri Borissowitsch Milner und Kooperationspartner (u.A. Stephen Hawking) im One World Trade Center, New York City, Aufzeichnung des gesamten Vortrages aufrufbar unter. http://livestream.com/breakthroughprize/starshot. Zugegriffen: 09. Dez. 2016

  43. Lubin P (2016) A roadmap to interstellar flight. NASA-internes Paper, Universit of California, Santa Barbara, Open access. https://www.nasa.gov/sites/default/files/atoms/files/roadmap_to_interstellar_flight_tagged.pdf. Zugegriffen: 09. Dez. 2016

  44. Atri D, Melott AL (2011) Terrestrial effects of high energy cosmic rays. Dissertation, University of Kansas, präsentiert in: 32nd International Comsic Ray Conference 11:415–417, 2011, Peking.doi: 10.7529/ICR2011/ V11/1345

  45. Ziegler JF (1996) Terrestrial cosmic ray intensities. IBM J Res Dev 40(1):19–40. doi: 10.1147/rd.401.0019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Verlag GmbH Deutschland

About this chapter

Cite this chapter

Janjic, A. (2017). Auf der Suche nach Signaturen des Lebens. In: Lebensraum Universum. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54787-8_1

Download citation

Publish with us

Policies and ethics