Skip to main content

Das Nadelöhr – von der Forschung zur Entwicklung

  • Chapter
  • First Online:
Die Pharmaindustrie
  • 2842 Accesses

Zusammenfassung

Die Wurzeln der Arzneimittelforschung reichen zurück bis in die Anfänge der Menschheitsgeschichte. Von jeher war es der Traum, auf gezieltem Weg zu Therapeutika zu kommen. Schon für die ersten Hochkulturen ist der Einsatz pflanzlicher, mineralischer oder tierischer Drogen belegt. Im Mittelalter suchten die Alchimisten nach dem Lebenselixier, das alle Krankheiten zu heilen vermag – leider vergebens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 24.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 34.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • 1 Balkenhohl F, Bussche-Hünefeld C vd,. Lansky A, Zechel A (1996) Kombinatorische Synthese von kleinen organischen Molekülen. In: Angew Chem 108: 2436–2488

    Google Scholar 

  • 2 Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S, Mathieson T, Perrin J, Raida M, Rau C, Reader V, Sweetman G, Bauer A, Bouwmeester T, Hopf C, Kruse U, Neubauer G, Ramsden N, Rick J, Kuster B, Drewes G (2007) Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. In: Nat Biotechnol 25: 1035–1044

    Google Scholar 

  • 3 Barr AJ, Ugochukwu E, Lee WH, King ONF, Filippakopoulos P, Alfano I et al (2009) Large-scale structural analysis of the classical human protein tyrosine phosphatome. In: Cell 136, 352–363

    Google Scholar 

  • 4 Bleicher KH, Böhm HJ, Müller K, Alanine AI (2003) Hit and lead generation: beyond high-throughput screening. In: Nat Rev Drug Discov 2, 369–378

    Google Scholar 

  • 5 Böhm HJ, Klebe G (1996) Was läßt sich aus der molekularen Erkennung in Protein-Ligand- Komplexen für das Design neuer Wirkstoffe lernen? Angew Chem, 108, 2750–2778

    Google Scholar 

  • 6 Breinbauer R, Vetter IR, Waldmann H (2002) Von Proteindomänen zu Wirkstoffkandidaten − Naturstoffe als Leitstrukturen für das Design und die Synthese von Substanzbibliotheken. In: Angew Chem 116, 3002–3015

    Google Scholar 

  • 7 Brenk R, Naerum L, Grädler U, Gerber HD, Garcia GA, Reuter K, Stubbs MT, Klebe G (2003) Virtual screening for submicromolar leads of tRNA-guanine transglycosylase based on a new unexpected binding mode detected by crystal structure analysis. In: J Med Chem 46, 1133–1143

    Google Scholar 

  • 8 Burbaum JJ (1998) Miniaturization technologies in HTS: how fast, how small, how soon? In: DDT 3, 313–322

    Google Scholar 

  • 9 Burger A (1991) Isosterism and bioisosterism in drug design. In: Fortschr Arzneimittelforsch 37, 287–371

    Google Scholar 

  • 10 Buss AD, Waigh RD (1995) Natural Products as Leads for New Pharmaceuticals. In: Wolff M (Hrsg) Burger’s Medicinal Chemistry and Drug Discovery. John Wiley & Sons, S. 983–1033

    Google Scholar 

  • 11 Cahn A, Hepp P (1886) Das Antifebrin, ein neues Fiebermittel. In: Centralblatt für Klinische Medizin 7, 561–564

    Google Scholar 

  • 12 Cooper MA (2002) Optical biosensors in drug discovery. In: Nat Rev Drug Discov 1, 515–528

    Google Scholar 

  • 13 Dearden JC (1990) Molecular Structure and Drug Transport. In: Ramsden CA (Hrsg) Quantitative Drug Design, Band 4 von: Hansch P, Sammes G, Taylor JB (Hrsg) Comprehensive Medicinal Chemistry. Pergamon Press, Oxford, S. 375–411

    Google Scholar 

  • 14 Estler CJ (1997) Arzneimittel im Alter. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • 15 Folkers G (Hrsg, 1995) Lock and Key − A Hundred Years After. Emil Fischer Commemorate Symposium. In: Pharmaceutica Acta Helvetiae 69, 175–269 (1995)

    Google Scholar 

  • 16 Gohlke H, Klebe G (2002) Ansätze zur Vorhersage und Beschreibung der Bindungsaffinität niedermolekularer Liganden an makromolekulare Rezeptoren. In: Angew Chem 114, 2764–2798

    Google Scholar 

  • 17 Goldstein DM, Gray NS, Zarrinkar PP (2008) Highthroughput kinase profiling as a platform for drug discovery. In: Nat Rev Drug Discov 7, 391–397

    Google Scholar 

  • 18 Gonzalez JE, Oades K, Leychkis Y, Harootunian A, Negulescu PA (1999) Cell-based assays and instrumentation for screening ion-channel targets. In: DDT 4, 431–439

    Google Scholar 

  • 19 Goodford PJ (1984) Drug design by the method of receptor fit. In: J Med Chem 27, 557–564

    Google Scholar 

  • 20 Greer J, Erickson JW, Baldwin JJ, Varney MD (1994) Application of the three-dimensional structures of protein target molecules in structure-based drug design. In: J Med Chem 37, 1035–1054

    Google Scholar 

  • 21 Grüneberg S, Stubbs MT, Klebe G (2002) Successful virtual screening for novel inhibitors of human carbonic anhydrase: strategy and experimental confirmation. In: J Med Chem 45, 3588–3602

    Google Scholar 

  • 22 Günther J, Bergner A, Hendlich M, Klebe G (2003) Utilising structural knowledge in drug design strategies: applications using Relibase. In: J Mol Biol 326, 621–636

    Google Scholar 

  • 23 Gurrath M (2001) Der humane AT1-Rezeptor. In: Pharm unserer Zeit, 4, 288–295 (2001)

    Google Scholar 

  • 24 C. Hansch and A. Leo, Exploring QSAR. Fundamentals and Applications in Chemistry and Biology, Band 1, American Chemical Society, Washington, 1995

    Google Scholar 

  • 25 Hanson MA, Stevens RC (2009) Discovery of new GPCR biology: One receptor structure at a time. Structure 17:8–14

    Google Scholar 

  • 26 Hertzberg RP, Pope AJ (2000) High-throughput screening: new technology for the 21st century. Curr. Op. Chem. Biol. 4:445–451

    Google Scholar 

  • 27 Hughes WH (1974) Fleming and Penicillin. Priority Press Ltd., Hove, Sussex

    Google Scholar 

  • 28 Hylands PJ, Nisbet LJ (1991) The search for molecular diversity (I): Natural Products. Ann. Rep. Med. Chem. 26:259–269

    Google Scholar 

  • 29 Jenwitheesuk E, Horst JA, Rivas KL, Van Voorhis WC, Samudrala R (2007) Novel paradigms for drug discovery: computational multitarget screening. Trends in Pharmacological Sciences 29:62–71

    Google Scholar 

  • 30 Klebe G (2001) Wirkstoffdesign bei der Entwicklung substratähnlicher HIV-Protease-Hemmstoffe. Pharm. i. u. Zeit 3:194–201

    Google Scholar 

  • 31 Klebe G (2009) Wirkstoffdesign. Spektrum Akad. Verlag, Heidelberg

    Google Scholar 

  • 32 Kubinyi H (1995) Lock and key in the real world: concluding remarks. Pharmac. Acta Helv. 69:259–269

    Google Scholar 

  • 33 Kubinyi H (1994) Der Schlüssel zum Schloss. II. Hansch-Analyse, 3D-QSAR und De novo-Design. Pharmazie i. u. Zeit 23:281–290

    Google Scholar 

  • 34 Kubinyi H (1993) QSAR: Hansch Analysis and Related Approaches. VCH, Weinheim

    Google Scholar 

  • 35 Kuntz ID (1992) Structure-based strategies for drug design and discovery Science 257:1078–1082

    Google Scholar 

  • 36 Kutter E (1978) Arzneimittelentwicklung. Grundlagen - Strategien - Perspektiven. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • 37 Lichtenthaler FW (1994) Hundert Jahre Schlüssel-Schloss-Prinzip: Was führte Emil Fischer zu dieser Analogie? Angew. Chem. 106:2456–2467

    Google Scholar 

  • 38 Lipinski CA (1986) Bioisosterism in drug design. Ann. Rep. Med. Chem. 21:283–291

    Google Scholar 

  • 39 Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23:3–25

    Google Scholar 

  • 40 Lipnick RL (1990) Selectivity.In: Kennewell PD (Hrsg) General Principles, Bd 1 von: Hansch C, Sammes PG, Taylor JB (Hrsg) Comprehensive Medicinal Chemistry. Pergamon Press, Oxford, S. 239–247

    Google Scholar 

  • 41 Mager PP (1987) Zur Entwicklung von bioaktiven Leistrukturen. Versuch einer Systematik. Pharmazie i. u. Zeit 16:97–121

    Google Scholar 

  • 42 Müller G (2000) Toward 3D structures of G protein-coupled receptors: A multidisciplinary approach. Curr. Med. Chem. 7:83–95

    Google Scholar 

  • 43 Pellecchia M, Bertini I, Cowburn D, Dalvit C, Giralt E, Jahnke W, James TL, Homans SW, Kessler H, Luchinat C, Meyer B, Oschkinat H, Peng J, Schwalbe H, Siegal G (2008) Perspectives on NMR in drug discovery: a technique comes of age. Nat. Rev. Drug Discov. 7:738–745

    Google Scholar 

  • 44 Prabhakar KJ, Francis PA, Woerner J, Chang CH, Garber SS, Anton ED, Bacheler LT (1997) Cyclic urea amides: HIV-1-protease inhibitors with low nanomolar potency against both wild type and protease inhibitor resistant mutants of HIV. J. Med. Chem. 40:181–191

    Google Scholar 

  • 45 Reinhardt CA (1994) (Hrsg), Alternatives to Animal Testing. VCH, Weinheim

    Google Scholar 

  • 46 Roberts RM (1989) Serendipity. Accidental Discoveries in Science., John Wiley & Sons, New York

    Google Scholar 

  • 47 Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Google Scholar 

  • 48 Schwalbe H, Wess G (2002) Dissecting G-protein-coupled receptors: structure, function, and ligand Interactions. ChemBioChem 2:915–1016

    Google Scholar 

  • 49 Sneader W (1990) Chronology of Drug Introductions.In: Hansch C, Sammes PG, Taylor JB (Hrsg) Comprehensive Medicinal Chemistry. Pergamon Press, Oxford, S. 7–80

    Google Scholar 

  • 50 Spezial-Heft: Proteomics and Drug Development‘. Biospektrum, September 2002

    Google Scholar 

  • 51 de Stevens G (1986) Serendipity and structured research in drug discovery. Fortschr. Arzneimittelforsch. 30:189–203

    Google Scholar 

  • 52 Stubbs MT (2006) Protein ligand interactions studied by X-ray. In: Ganten D, Ruckpaul K (Hrsg) Encyclopedic Reference of Genomics and Proteomics in Molecular Medicine. Springer Verlag, Berlin, Heidelberg

    Google Scholar 

  • 53 Stryer L (2003) Biochemie. 5. Aufl. Spektrum Akad. Verlag, Heidelberg, 2003, S. 236–238

    Google Scholar 

  • 54 Sundberg SA (2000)High-throughput and ultrahighthroughput screening: solution- and cell-based approaches. Curr. Op. Biotech. 11:47–53

    Google Scholar 

  • 55 Tempesta MS, King SR (1994) Ethnobotany as a source for new drugs. Ann. Rep. Med. Chem. 29:325–330

    Google Scholar 

  • 56 Thornber CW (1979) Isosterism and molecular modification in drug design. Chem. Soc. Rev. 8:563–580

    Google Scholar 

  • 57 Todd MJ, Luque I, Velázquez-Campoy A, Freire E (2000) Thermodynamic basis of resistance to HIV-1 protease inhibition: calorimetric analysis of the V82F/I84 V active site resistant mutant. Biochemistry 39:11876–11883

    Google Scholar 

  • 58 Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat. Rev. Drug Discov. 5:785–799

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Aigner, A., Czubayko, F., Klebe, G., Stubbs, M. (2013). Das Nadelöhr – von der Forschung zur Entwicklung. In: Fischer, D., Breitenbach, J. (eds) Die Pharmaindustrie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54656-7_2

Download citation

Publish with us

Policies and ethics