Skip to main content

Efficient Circuit Design of Reversible Square

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 10220))

Abstract

In the midst of emerging technology, reversible computing is promising due to its application in the field of quantum computing. The computing hardware plays a significant role in digital signal processing (DSP) and multimedia application; one such major computing hardware is multiplier. It is a practice to choose multiplier to compute square of an operand. Multiplication hardware requires more elementary computations which leads to performance degradation in terms of reversible performance metrics like quantum cost, garbage outputs, and ancilla inputs. Ancilla inputs and garbage outputs are overhead bits in a reversible circuit. Reversible quantum computers of many qubits are extremely difficult to realize, thus we propose garbageless circuit design for reversible square computation. The proposed design methodology is based on recursion. Recursion technique is adapted from Karatsuba’s recursive method to compute square of an operand; we designed inverse computation units to retrieve the inputs and obtain garbageless circuit. On comparing proposed circuit design with existing reversible square designs and Karatsuba multiplier design, we observed that our work improves number of input lines which includes data lines and ancilla lines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Banerjee, A., Das, D.K.: Squaring in reversible logic using iterative structure. In: 2014 East-West Design & Test Symposium (EWDTS), pp. 1–4. IEEE (2014)

    Google Scholar 

  2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Choi, B.S., Van Meter, R.: A \(\theta (\sqrt{n}) \)-depth quantum adder on the 2D NTC quantum computer architecture. ACM J. Emerg. Technol. Comput. Syst. (JETC) 8(3), 24 (2012)

    Google Scholar 

  4. Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-carry addition circuit. arXiv preprint quant-ph/0410184 (2004)

    Google Scholar 

  5. Draper, T.G., Kutin, S.A., Rains, E.M., Svore, K.M.: A logarithmic-depth quantum carry-lookahead adder. arXiv preprint quant-ph/0406142 (2004)

    Google Scholar 

  6. Haghparast, M., Bolhassani, A.: Optimized parity preserving quantum reversible full adder/subtractor. Int. J. Quantum Inf. 14(03), 1650019 (2016)

    Article  MATH  Google Scholar 

  7. Jamal, L., Babu, H.M., et al.: Efficient approaches to design a reversible floating point divider. In: 2013 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3004–3007. IEEE (2013)

    Google Scholar 

  8. Jayashree, H.V., Thapliyal, H., Agrawal, V.K.: Design of dedicated reversible quantum circuitry for square computation. In: 27th International Conference on VLSI Design and 13th International Conference on Embedded Systems, pp. 551–556. IEEE (2014)

    Google Scholar 

  9. Jayashree, H.V., Thapliyal, H., Arabnia, H.R., Agrawal, V.K.: Ancilla-input and garbage-output optimized design of a reversible quantum integer multiplier. J. Supercomputing 72(4), 1477–1493 (2016)

    Article  Google Scholar 

  10. Oberman, S.F., Flynn, M.: Division algorithms and implementations. IEEE Trans. Comput. 46(8), 833–854 (1997)

    Article  MathSciNet  Google Scholar 

  11. Portugal, R., Figueiredo, C.: Reversible Karatsubas algorithm. J. Universal Comput. Sci. 12(5), 499–511 (2006)

    MathSciNet  Google Scholar 

  12. Rabinowitz, P.: Multiple-precision division. Commun. ACM 4(2), 98 (1961)

    Article  MATH  Google Scholar 

  13. Shoaei, S., Haghparast, M.: Novel designs of nanometric parity preserving reversible compressor. Quantum Inf. Process. 13(8), 1701–1714 (2014)

    Article  MATH  Google Scholar 

  14. Smolin, J.A., Di Vincenzo, D.P.: Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. Phys. Rev. A 53(4), 2855–2856 (1996)

    Article  Google Scholar 

  15. Takahashi, Y.: Quantum arithmetic circuits: a survey. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 92(5), 1276–1283 (2009)

    Article  Google Scholar 

  16. Takahashi, Y., Kunihiro, N.: A linear-size quantum circuit for addition with no ancillary qubits. Quantum Inf. Comput. 5(6), 440–448 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Takahashi, Y., Kunihiro, N.: A fast quantum circuit for addition with few qubits. Quantum Inf. Comput. 8(6), 636–649 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Thapliyal, H.: Mapping of subtractor and adder-subtractor circuits on reversible quantum gates. In: Gavrilova, M.L., Tan, C.J.K. (eds.) Transactions on Computational Science XXVII. LNCS, vol. 9570, pp. 10–34. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  19. Thapliyal, H., Ranganathan, N.: Design of efficient reversible binary subtractors based on a new reversible gate. In: 2009 IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2009, pp. 229–234. IEEE (2009)

    Google Scholar 

  20. Thapliyal, H., Ranganathan, N.: Design of efficient reversible logic-based binary and BCD adder circuits. ACM J. Emerg. Technol. Comput. Syst. (JETC) 9(3), 17 (2013)

    Google Scholar 

  21. Thapliyal, H., Varun, T., Munoz-Coreas, E.: Quantum circuit design of integer division optimizing ancillary qubits and T-count. arXiv preprint arxiv:1609.01241 (2016)

  22. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147 (1996)

    Article  MathSciNet  Google Scholar 

  23. Moghadam, M.Z., Navi, K.: Ultra-area-efficient reversible multiplier. Microelectronics J. 43(6), 377–385 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himanshu Thapliyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Jayashree, H.V., Thapliyal, H., Agrawal, V.K. (2017). Efficient Circuit Design of Reversible Square. In: Gavrilova, M., Tan, C. (eds) Transactions on Computational Science XXIX. Lecture Notes in Computer Science(), vol 10220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54563-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54563-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54562-1

  • Online ISBN: 978-3-662-54563-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics