Skip to main content

Modelling Mixed-Species Forest Stands

  • Chapter
  • First Online:
Mixed-Species Forests

Abstract

The chapter first describes common models for monospecific stands and then the environmental conditions, processes, and structures that need to be included in forest growth models that are to be applied to mixed-species forests, how these different processes are incorporated into models, and the strengths and weaknesses of tree-level and stand-level approaches. The chapter gives an introduction to empirical models, process-based models, and hybrid models, which are a combination of the former two groups. Empirical models describe the system behaviour statistically, not the structure and mechanistic functioning of the system. Process-based models describe the trees and stand development on the basis of the underlying structure, within-stand environment, and functioning. Hybrid models represent a compromise between empirical and process-based models; they may bridge knowledge gaps of processes using statistical relationships. The chapter focuses on models that start at the individual tree level and scale up to the stand level or models that start and finish at the stand level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida AC, Sands PJ (2015) Improving the ability of 3-PG to model the water balance of forest plantations in contrasting environments. Ecohydrology. doi:10.1002/eco.1661

    Google Scholar 

  • Almeida AC, Landsberg JJ, Sands PJ (2004) Parameterisation of 3-PG model for fast-growing Eucalyptus grandis plantations. For Ecol Manag 193:179–195

    Article  Google Scholar 

  • Almeida AC, Soares JV, Landsberg JJ, Rezende GD (2007) Growth and water balance of Eucalyptus grandis hybrid plantations in Brazil during a rotation for pulp production. For Ecol Manag 251:10–21

    Article  Google Scholar 

  • Almeida AC, Siggins A, Batista TR, Beadle C, Fonseca S, Loos R (2010) Mapping the effect of spatial and temporal variation in climate and soils on Eucalyptus plantation production with 3-PG, a process-based growth model. For Ecol Manag 259:1730–1740

    Article  Google Scholar 

  • Assmann E (1970) The principles of forest yield study. Pergamon Press, Oxford, NY

    Google Scholar 

  • Assmann E, Franz F (1963) Vorläufige Fichten-Ertragstafel fĂĽr Bayern. Institut fĂĽr Ertragskunde der Forstl Forschungsanstalt MĂĽnchen:103

    Google Scholar 

  • Assmann E, Franz F (1965) Vorläufige Fichten-Ertragstafel fĂĽr Bayern. Forstwissenschaftliches Centralblatt 84, 1/2, Sonderdruck edn. Verlag Paul Parey, Hamburg

    Google Scholar 

  • Baldocchi DD, Hutchinson BA, Matt DR, McMillen RT (1984) Seasonal variations in the radiation regime within an oak-hickory forest. Agric For Meteorol 33:177–191

    Article  Google Scholar 

  • Battaglia M, Sands PJ (1998) Process-based forest productivity models and their application in forest management. For Ecol Manag 102:13–32

    Article  Google Scholar 

  • Battaglia M, Bruce J, Latham R, O’Grady A, Greenwood A (2015) Process-based size-class distribution model of trees within forest plantations: a hierarchical modeling approach. For Ecol Manag 344:63–72

    Article  Google Scholar 

  • Bauhus J, van Winden AP, Nicotra AB (2004) Above-ground interactions and productivity in mixed-species plantations of Acacia mearnsii and Eucalyptus globulus. Can J For Res 34:686–694

    Article  Google Scholar 

  • Baur F (1877) Die Fichte in Bezug auf Ertrag, Zuwachs und Form. Springer, Berlin

    Book  Google Scholar 

  • Binkley D, Sollins P, Bell R, Sachs D, Myrold D (1992) Biogeochemistry of adjacent conifer and alder-conifer stands. Ecology 73:2022–2033

    Article  CAS  Google Scholar 

  • Bonnemann A (1939) Der gleichaltrige Misehbestand von Kiefer und Buche. Mitt aus Forstwirtschaft und Forstwissenschaft 10:439–483

    Google Scholar 

  • Bossel H (1994) TREEDYN3 forest simulation model. Reihe B, vol 35. Ber Forschungszentrum Waldökosysteme, Univ Göttingen

    Google Scholar 

  • Bouillet JP, Laclau JP, Goncalves JLM, Moreira MZ, Trivelin PCO, Jourdan C, Silva EV, Piccolo MC, Tsai SM, Galiana A (2008) Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil 2: nitrogen accumulation in the stands and biological N2 fixation. For Ecol Manag 255:3918–3930

    Article  Google Scholar 

  • Bugmann H (2001) A review of forest gap models. Clim Change 51(3–4):259–305

    Article  Google Scholar 

  • Cajander AK (1926) The theory of forest types. Acta For Fenn 29:108

    Article  Google Scholar 

  • Canham C, Coates KD, Bartemucci P, Quaglia S (1999) Measurement and modeling of spatially explicit variation in light transmission through interior cedar-hemlock forests of British Columbia. Can J For Res 29:1775–1783

    Article  Google Scholar 

  • Charbonnier F, le Maire G, Dreyer E, Casanoves F, Christina M, Dauzat J, Eitel JUH, Vaast P, Vierling LA, Roupsard O (2013) Competition for light in heterogeneous canopies: application of MAESTRA to a coffee (Coffea arabica L.) agroforestry system. Agric For Meteorol 181:152–169

    Article  Google Scholar 

  • Clark PJ, Evans FC (1954) Distance to nearest neighbour as a measure of spatial relationships in populations. Ecology 35(4):445–453

    Article  Google Scholar 

  • Clutter JL, Bennett FA (1965) Diameter distributions in old-field slash pine plantations, Georgia, vol 13. USDA Southeastern Forest Exp Station, Asheville, NC

    Google Scholar 

  • von Cotta H (1821) HĂĽlfstafeln fĂĽr Forstwirte und Forsttaxatoren. Arnoldische Buchhandlung, Dresden

    Google Scholar 

  • Duursma RA, Medlyn BE (2012) MAESPA: a model to study interactions between water limitation, environmental drivers and vegetation function at tree and stand levels, with an example application to [CO2] Ă— drought interactions. Geosci Model Dev 5:919–940

    Article  Google Scholar 

  • Dye PJ (2001) Modelling growth and water use in four Pinus patula stands with the 3-PG model. S Afr For J 191:53–63

    Google Scholar 

  • Eichhorn F (1902) Ertragstafeln fĂĽr die WeiĂźtanne. Verlag Julius Springer, Berlin

    Book  Google Scholar 

  • Ek AR, Monserud RA (1974) Trials with program FOREST: growth and reproduction simulation for mixed species even- or uneven-aged forest stands. In: Fries J (ed) Growth models for tree and stand simulation. Res notes, 30th edn. Royal College of Forestry, Stockholm, pp 56–73 (379 p)

    Google Scholar 

  • Feikema PM, Morris JDR, Beverly C, Collopy JJ, Baker TG, Lane PNJ (2010) Validation of plantation transpiration in south-eastern Australia estimated using the 3PG+ forest growth model. For Ecol Manag 260:14–22

    Article  Google Scholar 

  • Forrester DI (2014a) The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process. For Ecol Manag 312:282–292

    Article  Google Scholar 

  • Forrester DI (2014b) A stand-level light interception model for horizontally and vertically heterogeneous canopies. Ecol Model 276:14–22

    Article  Google Scholar 

  • Forrester DI, Albrecht AT (2014) Light absorption and light-use efficiency in mixtures of Abies alba and Picea abies along a productivity gradient. For Ecol Manag 328:94–102

    Article  Google Scholar 

  • Forrester DI, Tang X (2016) Analysing the spatial and temporal dynamics of species interactions in mixed-species forests and the effects of stand density using the 3-PG model. Ecol Model 319:233–254

    Article  Google Scholar 

  • Forrester DI, Bauhus J, Cowie AL, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For Ecol Manag 233:211–230

    Article  Google Scholar 

  • Forrester DI, Schortemeyer M, Stock WD, Bauhus J, Khanna PK, Cowie AL (2007) Assessing nitrogen fixation in mixed- and single-species plantations of Eucalyptus globulus and Acacia mearnsii. Tree Physiol 27:1319–1328

    Article  CAS  PubMed  Google Scholar 

  • Forrester DI, Guisasola R, Tang X, Albrecht AT, Dong TL, le Maire G (2014) Using a stand-level model to predict light absorption in stands with vertically and horizontally heterogeneous canopies. For Ecosyst 1:17

    Article  Google Scholar 

  • Forrester DI, Benneter A, Bouriaud O, Bauhus J (2017) Diversity and competition influence tree allometry – developing allometric functions for mixed-species forests. J Ecol. doi:10.1111/1365-2745.12704

    Google Scholar 

  • Franz F (1968) Das EDV-Programm STAOET – zur Herleitung mehrgliedriger Standort-Leistungstafeln. MĂĽnchen (Unpublished manuscript)

    Google Scholar 

  • Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246

    Article  Google Scholar 

  • Gehrhardt E (1909) Ueber Bestandes-Wachstumsgesetze und ihre Anwendung zur Aufstellung von Ertragstafeln. Allgemeine Forst- und Jagdzeitung 85:117–128

    Google Scholar 

  • Goisser M, Geppert U, Rötzer T, Paya A, Huber A, Kerner R, Bauerle T, Pretzsch H, Pritsch K, Häberle K-H, Matyssek R, Grams TEE (2016) Does belowground interaction with Fagus sylvatica increase drought susceptibility of photosynthesis and stem growth in Picea abies? For Ecol Manag 375:268–278

    Article  Google Scholar 

  • Gonzalez-Benecke CA, Jokela EJ, Cropper WP Jr, Bracho R, Leduc DJ (2014) Parameterization of the 3-PG model for Pinus elliottii stands using alternative methods to estimate fertility rating, biomass partitioning and canopy closure. For Ecol Manag 327:55–75

    Article  Google Scholar 

  • González-GarcĂ­a M, Almeida AC, Hevia A, Majada J, Beadle CL (2016) Application of a process-based model for predicting the productivity of Eucalyptus nitens bioenergy plantations in Spain. GCB Bioenergy 8(1):194–210

    Article  Google Scholar 

  • Grimm V (1999) Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? Ecol Model 115:129–148

    Article  Google Scholar 

  • Grote R, Pretzsch H (2002) A model for individual tree development based on physiological processes. Plant Biol 4:167–180

    Article  Google Scholar 

  • Härkönen S, Pulkkinen M, Duursma R, Mäkelä A (2010) Estimating annual GPP, NPP and stem growth in Finland using summary models. For Ecol Manag 259:524–533

    Article  Google Scholar 

  • Hasenauer H (1994) Ein Einzelbaumwachstumssimulator fĂĽr ungleichaltrige Kiefern- und Buchen- Fichtenmischbestände. Forstl Schr Univ Bodenkultur, Wien

    Google Scholar 

  • Hayat H, Hacket-Pain A J, Pretzsch H, Rademacher TT, Friend AD (2017) Modelling tree growth taking into account carbon source and sink limitations. Front Plant Sci. doi: 10.3389/fpls.2017.00182

  • Hertel C, Leuchner M, Rötzer T, Menzel A (2012) Assessing stand structure of beech and spruce from measured spectral radiation properties and modeled leaf biomass parameters. Agric For Meteorol 165:82–91

    Article  Google Scholar 

  • Heyer G (1845) Wedekinds Neue Jahrb. 30:1–127

    Google Scholar 

  • Hradetzky J (1972) Modell eines integrierten Ertragstafel-Systems in modularer Form. Universität Freiburg

    Google Scholar 

  • Huth A, Tietjen B (2007) Management strategies for tropical rain forests: results of ecological models and requirements for ecological–economic modelling. Ecol Econ 62(2):207–215

    Article  Google Scholar 

  • Kahn M (1994) Modellierung der Höhenentwicklung ausgewählter Baumarten in Abhängigkeit vom Standort. Forstl Forschungsber MĂĽnchen 141:221

    Google Scholar 

  • Kammesheidt L, Köhler P, Huth A (2001) Sustainable timber harvesting in Venezuela: a modelling approach. J Appl Ecol 38(4):756–770

    Article  Google Scholar 

  • Keane RE, Austin M, Field C, Huth A, Lexer MJ, Peters D, Solomon A, Wyckoff P (2001) Tree mortality in gap models: application to climate change. Clim Change 51(3–4):509–540

    Article  Google Scholar 

  • Kellomäki S, Väisänen H (1997) Modelling the dynamics of the forest ecosystem for climate change studies in the boreal conditions. Ecol Model 97:121–140

    Article  Google Scholar 

  • Kimmins JP (1993) Scientific foundations for the simulation of ecosystem function and management in FORCYTE-11. Forestry Canada, Northern Forestry Centre, Edmonton

    Google Scholar 

  • Kimmins JP, Comeau PG, Kurz W (1990a) Modelling the interactions between moisture and nutrients in the control of forest growth. For Ecol Manag 30:361–379

    Article  Google Scholar 

  • Kimmins JP, Scoullar KA, Apps MJ, Kurz WA (1990b) The FORCYTE experience: a decade of model development. In: Proceedings of Symposium on Forestry Canada

    Google Scholar 

  • Kimmins JP, Mailly D, Seely B (1999) Modelling forest ecosystem net primary production: the hybrid simulation approach used in FORECAST. Ecol Model 122:195–224

    Article  Google Scholar 

  • Köhler P, Huth A (1998) The effects of tree species grouping in tropical rainforest modelling: simulations with the individual-based model FORMIND. Ecol Model 109:301–321

    Article  Google Scholar 

  • Komarov AS, Chertov OG, Zudin SL, Nadporozhskaya MA, Mikhailov AV, Bykhovets SS, Zudina E, Zoubkova E (2003) EFIMOD 2 – the system of simulation models of forest growth and elements cycles in forest ecosystems. Ecol Model 170:373–392

    Article  CAS  Google Scholar 

  • Kramer H, Akça A (1995) Leitfaden zur WaldmeĂźlehre. JD Sauerländer’s Verlag, Frankfurt am Main

    Google Scholar 

  • Kurth W (1999) Die Simulation der Baumarchitektur mit Wachstumsgrammatiken. Wissenschaftlicher Verlag, Berlin

    Google Scholar 

  • Laclau J-P, Nouvellon Y, Reine C, Gonçalves JLM, Krushe AV, Jourdan C, le Maire G, Bouillet J-P (2013) Mixing Eucalyptus and Acacia trees leads to fine root over-yielding and vertical segregation between species. Oecologia 172:903–913

    Article  PubMed  Google Scholar 

  • Landsberg JJ (1986) Physiological ecology of forest production. Academic Press, London

    Google Scholar 

  • Landsberg JJ (2003) Modelling forest ecosystems: state of the art, challenges, and future directions. Can J For Res 33:385–397

    Article  Google Scholar 

  • Landsberg JJ, Sands PJ (2010) Physiological ecology of forest production: principles, processes and models. Elsevier, Amsterdam

    Google Scholar 

  • Landsberg J, Mäkelä A, Sievänen R, Kukkola M (2005) Analysis of biomass accumulation and stem size distributions over long periods in managed stands of Pinus sylvestris in Finland using the 3-PG model. Tree Physiol 25:781–792

    Article  PubMed  Google Scholar 

  • Lasch P, Badeck F-W, Suckow F, Lindner M, Mohr P (2005) Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany). For Ecol Manag 207:59–74

    Article  Google Scholar 

  • Leemans R, Prentice IC (1989) FORSKA, a general forest succession model. Meddelanden fran Växtbiologiska Institutionen 2. Inst Ecol Bot, Univ Uppsala, Uppsala

    Google Scholar 

  • Liang J, Buongiorno J, Monserud RA (2005) Growth and yield of all-aged Douglas-fir western hemlock forest stands: a matrix model with stand diversity effects. Can J For Res 35(10):2368–2381

    Article  Google Scholar 

  • Ligot G, Balandier P, Courbaud B, Claessens H (2014) Forest radiative transfer models: which approach for which application? Can J For Res 44:385–397

    Article  CAS  Google Scholar 

  • Lindner M, Sievänen R, Pretzsch H (1997) Improving the simulation of stand structure in a forest gap model. For Ecol Manag 95(2):183–195

    Article  Google Scholar 

  • Litton CM, Raich JW, Ryan MG (2007) Carbon allocation in forest ecosystems. Glob Chang Biol 13:2089–2109

    Article  Google Scholar 

  • le Maire G, Nouvellon Y, Christina M, Ponzoni FJ, Gonçalves JLM, Bouillet J-P, Laclau J-P (2013) Tree and stand light use efficiencies over a full rotation of single- and mixed-species Eucalyptus grandis and Acacia mangium plantations. For Ecol Manag 288:31–42

    Article  Google Scholar 

  • Mäkelä A, Hari P (1986) Stand growth model based on carbon uptake and allocation in individual trees. Ecol Model 33:205–229

    Article  Google Scholar 

  • McDowell NG, Beerling DJ, Breshears DD, Fisher RA, Raffa KF, Stitt M (2011) The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol Evol 26:523–532

    Article  PubMed  Google Scholar 

  • Medlyn BE (1998) Physiological basis of the light use efficiency model. Tree Physiol 18:167–176

    Article  PubMed  Google Scholar 

  • Mette T, Albrecht A, Ammer C, Biber P, Kohnle U, Pretzsch H (2009) Evaluation of the forest growth simulator SILVA on dominant trees in mature mixed Silver fir–Norway spruce stands in South-West Germany. Ecol Model 220(13):1670–1680

    Article  Google Scholar 

  • Miehle P, Battaglia M, Sands PJ, Forrester DI, Feikema PM, Livesley SJ, Morris JD, Arndt SK (2009) A comparison of four process-based models and a statistical regression model to predict growth of Eucalyptus globulus plantations. Ecol Model 220:734–746

    Article  Google Scholar 

  • Mohren GMJ (1987) Simulation of forest growth, applied to Douglas fir stands in the Netherlands. PhD Thesis, Agricultural University, Wageningen

    Google Scholar 

  • Monserud RA, Sterba H (1996) A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria. For Ecol Manag 80:57–80

    Article  Google Scholar 

  • Monserud RA, Sterba H (1999) Modeling individual tree mortality for Austrian forest species. For Ecol Manag 113:109–123

    Article  Google Scholar 

  • Moosmayer HU, Schöpfer W (1972) Beziehungen zwischen Standortsfaktoren und Wuchsleistung der Fichte. Allgemeine Forst- und Jagdzeitung 143(10):203–215

    Google Scholar 

  • Moser JW (1972) Dynamics of an uneven-aged forest stand. For Sci 18:184–191

    Google Scholar 

  • Nagel J (1996) Anwendungsprogramm zur Bestandesbewertung und zur Prognose der Bestandesentwicklung. Forst und Holz 51(3):76–78

    Google Scholar 

  • Nagel J (1999) Konzeptionelle Ăśberlegungen zum schrittweisen Aufbau eineswaldwachstumskundlichen Simulations systems fĂĽr Nordwestdeutschland, vol 128. Forstl Fak Univ Göttingen u Niedersächs Forstl Versuchsanst, Frankfurt am Main

    Google Scholar 

  • Neumann RB, Cardon ZG (2012) The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies. New Phytol 194:337–352

    Article  PubMed  Google Scholar 

  • Newnham RM (1964) The development of a stand model for Douglas-fir. Forestry Facuty, University of British Columbia, Vancouver

    Google Scholar 

  • Nguyen TT, Biber P, Pretzsch H (2012) Analysis and management of stand dynamics of Vietnamese dipterocarp forests by applying a dynamic growth model. Ann For Sci 69(5):581–601

    Article  Google Scholar 

  • Nightingale JM, Hill MJ, Phinn SR, Davies ID, Held AA, Erskine PD (2008) Use of 3-PG and 3-PGS to simulate forest growth dynamics of Australian tropical rainforests I. Parameterisation and calibration for old-growth, regenerating and plantation forests. For Ecol Manag 254:107–121

    Article  Google Scholar 

  • Oliver CD, Larson BC (1996) Forest stand dynamics. Wiley, New York

    Google Scholar 

  • Paulsen JC (1795) Kurze praktische Anleitung zum Forstwesen. VerfaĂźt von einem Forstmanne, Detmold

    Google Scholar 

  • de Perthuis de Laillevault R (1803) TraitĂ© de l’amĂ©nagement et de la restauration des bois et forĂŞts de la France. Madame Huzard, Paris

    Google Scholar 

  • Peters EB, Wythers KR, Bradford JB, Reich PB (2013) Influence of disturbance on temperate forest productivity. Ecosystems 16:95–110

    Article  Google Scholar 

  • Pielou EC (1977) Mathematical ecology. Wiley, New York

    Google Scholar 

  • Pressler M (1877) Forstliche Zuwachs-, Ertrags- und Bonitierungs-Tafeln mit Regeln und Beispielen, 2nd edn. Selfpublishing, Tharandt

    Google Scholar 

  • Pretzsch H (1993) Analyse und Reproduktion räumlicher Bestandesstrukturen. Versuche mit dem Strukturgenerator STRUGEN, vol 114. Schr Forstl Fak Univ Göttingen u Niedersächs Forstl Versuchsanst. JD Sauerländer’s Verlag, Frankfurt am Main

    Google Scholar 

  • Pretzsch H (1997) Analysis and modeling of spatial stand structures. Methodological considerations based on mixed beech-larch stands in Lower Saxony. For Ecol Manag 97:237–253

    Article  Google Scholar 

  • Pretzsch H (1998) Structural diversity as a result of silvicultural operations. LesnictvĂ­-Forestry 44(10):429–439

    Google Scholar 

  • Pretzsch H (2001) Modellierung des Waldwachstums. Blackwell Wissenschafts-Verlag, Berlin

    Google Scholar 

  • Pretzsch H (2002) Application and evaluation of the growth simulator SILVA 2.2 for forest stands, forest estates and large regions. Forstwissenschaftliches Centralblatt 121:28–51

    Article  Google Scholar 

  • Pretzsch H (2009) Forest dynamics, growth and yield. Springer, Berlin

    Book  Google Scholar 

  • Pretzsch H (2014) Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For Ecol Manag 327:251–264

    Article  Google Scholar 

  • Pretzsch H, Biber P (2016) Tree species mixing can increase maximum stand density. Can J For Res 46:1179–1193. doi:10.1139/cjfr-2015-0413

    Article  Google Scholar 

  • Pretzsch H, Rötzer T (2015) Indicating forest ecosystem and stand productivity: from deductive to inductive concepts. In: Laroque GR (ed) Ecological forest management handbook, Series of applied ecology and environmental management. CRC Press, Taylor & Francis Group, p 604

    Google Scholar 

  • Pretzsch H, Biber P, Dursky J (2002) The single tree-based stand simulator SILVA: construction, application and evaluation. For Ecol Manag 162:3–21

    Article  Google Scholar 

  • Pretzsch H, Grote R, Reineking B, Rötzer T, Seifert S (2008) Models for forest ecosystem management: a European perspective. Ann Bot 101:1065–1087

    Article  CAS  PubMed  Google Scholar 

  • Pretzsch H, Bielak K, Bruchwald A, Dieler J, DudziĹ„ska M, Ehrhart HP, Jensen AM, Johannsen VK, Kohnle U, Nagel J, Spellmann H, Zasada M, Zingg A (2013) Species results from long-term experiments. Allgemeine Forst- und Jagdzeitung 184:177–196

    Google Scholar 

  • Pretzsch H, Rötzer T, Matyssek R, Grams TEE, Häberle KH, Pritsch K, Kerner R, Munch JC (2014) Mixed Norway spruce (Picea abies [L.] Karst) and European beech (Fagus sylvatica [L.]) stands under drought: from reaction pattern to mechanism. Trees 28:1305–1321

    Article  CAS  Google Scholar 

  • Pretzsch H, Forrester DI, Rötzer T (2015) Representation of species mixing in forest growth models. A review and perspective. Ecol Model 313:276–292

    Article  Google Scholar 

  • Pukkala T (1987) Simulation model for natural regeneration of pinus sylvestris, picea abies, betula pendula and betula pubescens. Silva Fenn 21:207–216

    Google Scholar 

  • Pukkala T, Miina J, Kurttila M, Kolström T (1998) A spatial yield model for optimizing the thinning regime of mixed stands of Pinus sylvestris and Picea abies. Scand J For Res 13:31–42

    Article  Google Scholar 

  • Pukkala T, Lähde E, Laiho O (2009) Growth and yield models for uneven-sized forest stands in Finland. For Ecol Manag 258:207–216

    Article  Google Scholar 

  • RodrĂ­guez R, Espinosa M, Real P, Inzunza J (2002) Analysis of productivity of radiata pine plantations under different silvicultural regimes using the 3PG process based model. Aust For 65:165–172

    Article  Google Scholar 

  • Rothe A, Binkley D (2001) Nutritional interactions in mixed species forests: a synthesis. Can J For Res 31:1855–1870

    Article  Google Scholar 

  • Rötzer T, Grote R, Pretzsch H (2004) The timing of bud burst and its effect on tree growth. Int J Biometeorol 48:109–118

    Article  PubMed  Google Scholar 

  • Rötzer T, Seifert T, Pretzsch H (2009) Modelling above and below ground carbon dynamics in a mixed beech and spruce stand influenced by climate. Eur J For Res 128:171–182

    Article  CAS  Google Scholar 

  • Rötzer T, Leuchner M, Nunn AJ (2010) Simulating stand climate, phenology, and photosynthesis of a forest stand with a process-based growth model. Int J Biometeorol 54:449–464

    Article  PubMed  Google Scholar 

  • Sands PJ (2004) Adaptation of 3-PG to novel species: guidelines for data collection and parameter assignment. CRC for Sustainable Production Forestry

    Google Scholar 

  • Sands PJ, Landsberg JJ (2002) Parameterisation of 3-PG for plantation grown Eucalyptus globulus. For Ecol Manag 163:273–292

    Article  Google Scholar 

  • Schmidt A (1971) Wachstum und Ertrag der Kiefer auf wirtschaftlich wichtigen Standorteinheiten der Oberpfalz. Forstl Forschungsber MĂĽnchen 1:187

    Google Scholar 

  • Schober R (1967) Buchen-Ertragstafel fĂĽr mäßige und starke Durchforstung. In: Schober R (ed) Die Rotbuche 1971, vol 43/44. JD Sauerländer’s Verlag, Frankfurt am Main, p 333

    Google Scholar 

  • Schume H, Jost G, Hager H (2004) Soil water depletion and recharge patterns in mixed and pure forest stands of European beech and Norway spruce. J Hydrol 289:258–274

    Article  Google Scholar 

  • Schwappach A (1893) Wachstum und Ertrag normaler Rotbuchenbestände. Verlag Julius Springer, Berlin

    Book  Google Scholar 

  • Shugart HH (1984) A theory of forest dynamics. The ecological implications of forest succession models. Springer, New York

    Book  Google Scholar 

  • Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP (2012) Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev 26:39–60

    Article  Google Scholar 

  • Stape JL, Ryan MG, Binkley D (2004) Testing the utility of the 3-PG model for growth of Eucalyptus grandisĂ—urophylla with natural and manipulated supplies of water and nutrients. For Ecol Manag 193:219–234

    Article  Google Scholar 

  • Sterba H, Moser M, Monserud RA (1995) Prognaus – Ein Waldwachstumssimulator fĂĽr Rein- und Mischbestände. Ă–sterreich Forstzeitg 5:19–20

    Google Scholar 

  • Suzuki T (1971) Forest transition as a stochastic process. Mitt Forstl Bundesversuchsanst Wien 91:69–86

    Google Scholar 

  • Thurm EA, Biber P, Pretzsch H (2016) Tree growth is partitioned in favor of the stem on the expense of the roots for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and European beech (Fagus sylvatica L.) if growing in mixture and under humid conditions. Trees. doi:10.1007/s00468-016-1512-4

    Google Scholar 

  • Van Kessel C, Farrell RE, Roskoski JP, Keane KM (1994) Recycling of the naturally-occurring 15N in an established stand of Leucaena leucocephala. Soil Biol Biochem 26:757–762

    Article  Google Scholar 

  • Wang W, Peng C, Zhang SY, Zhou X, Larocque GR, Kneeshaw DD, Lei X (2011) Development of TRIPLEX-management model for simulating the response of forest growth to pre-commercial thinning. Ecol Model 222:2249–2261

    Article  CAS  Google Scholar 

  • Wei L, Marshall JD, Link TE, Kavanagh KL, Du E, Pangle RE, Gag PJ, Ubierna N (2014a) Constraining 3-PG with a new δ13C submodel: a test using the δ13C of tree rings. Plant Cell Environ 37:82–100

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Marshall JD, Zhang J, Zhou H, Powers RF (2014b) 3-PG simulations of young ponderosa pine plantations under varied management intensity: why do they grow so differently? For Ecol Manag 313:69–82

    Article  Google Scholar 

  • Weiskittel AR, Maguire DA, Monserud RA, Johnson GP (2010) A hybrid model for intensively managed Douglas-fir plantations in the Pacific Northwest, USA. Eur J For Res 129:325–338

    Article  Google Scholar 

  • Wiedemann E (1932) Die Rotbuche 1931. Mitt Forstwirtsch u Forstwiss 3(1):189

    Google Scholar 

  • Wiedemann E (1942) Der gleichaltrige Fichten-Buchen-Mischbestand. Mitt Forstwirtsch u Forstwiss 13:1–88

    Google Scholar 

  • Wykoff WR, Monserud RA (1988) Representing site quality in increment models: a comparison of methods. In: Ek AR, Shifley SR, Burk TE (eds) Proceedings of IUFRO conference, Minneapolis, MN, Aug 1987. Gen Tech Rep NC-120, pp 184–191

    Google Scholar 

  • Wykoff WR, Crookston NL, Stage AR (1982) User’s guide to the stand prognosis model. US Forest Service, Ogden, UT

    Book  Google Scholar 

  • Xenakis G, Ray D, Mencuccini M (2008) Sensitivity and uncertainty analysis from a coupled 3-PG and soil organic matter decomposition model. Ecol Model 219:1–16

    Article  CAS  Google Scholar 

  • Yao X, Titus SJ, MacDonald SE (2001) A generalized logistic model of individual tree mortality for aspen, white spruce, and lodgepole pine in Alberta mixed wood forests. Can J For Res 31:283–291

    Google Scholar 

  • Zeide B (2003) The U-approach to forest modeling. Can J For Res 33:480–489

    Article  Google Scholar 

  • Zhao D, Borders B, Wilson M (2004) Individual-tree diameter growth and mortality models for bottom land mixed-species hardwood stands in the lower Mississippi alluvial valley. For Ecol Manag 199:307–322

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Pretzsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Pretzsch, H., Rötzer, T., Forrester, D.I. (2017). Modelling Mixed-Species Forest Stands. In: Pretzsch, H., Forrester, D., Bauhus, J. (eds) Mixed-Species Forests. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54553-9_8

Download citation

Publish with us

Policies and ethics