Skip to main content

Individual Tree Structure and Growth in Mixed Compared with Monospecific Stands

  • Chapter
  • First Online:

Abstract

This chapter focuses on the shape, growth, and productivity of individual trees growing in inter- versus intraspecific environments. The individual tree senses and responds to the prevailing environmental conditions. The properties of the individuals determine the forest stand dynamics as individuals of different species interact with each other. Therefore, the level of the individual tree is most suitable for understanding competition, competition reduction through complementarity, and facilitation, which can result in the differences between structure dynamics and productivity of mixed compared with monospecific stands. The chapter shows how species mixing can modify the size development, persistence, and productivity of individual trees in mixed stands compared with members of the same species in neighbouring monospecific stands. Many of the beneficial tree mixing reactions result from complementary crown and root shape, spatially or temporally complementary resource exploitation, redistribution of resources, or modification of growth allocation and allometry introduced in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alemdag IS (1978) Evaluation of some competition indexes for the prediction of diameter increment in planted white spruce. Can For Serv, Ottawa, Canada

    Google Scholar 

  • Arz MAO (2013) Strukturelle Kronenanalyse von Fichte (Picea abies [L.] Karst.) und Buche (Fagus sylvativa L.) im Rein- und Mischbestand. Kombination von terrestrischen Laserscan- und Zuwachsdaten

    Google Scholar 

  • Assmann E (1970) The principles of forest yield study. Pergamon Press, Oxford, New York

    Google Scholar 

  • Assmann E, Franz F (1965) Vorläufige Fichten-Ertragstafel für Bayern. Forstwissenschaftliches Centralblatt 84, 1/2, Sonderdruck, Verlag Paul Parey, Hamburg/Berlin

    Google Scholar 

  • Augusto L, Ranger J, Binkley D, Rothe A (2002) Impact of several common tree species of European temperate forests on soil fertility. Ann For Sci 59:233–253

    Article  Google Scholar 

  • Bauhus J (2009) Rooting patterns of old-growth forests: is aboveground structural and functional diversity mirrored belowground? In: Cea W (ed) Old-growth forests, ecological studies, vol 207. Springer, Berlin, pp 211–229. doi:10.1007/978-3-540-92706-8_10

    Chapter  Google Scholar 

  • Bauhus J, Messier C (1999) Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada. Can J For Res 29(2):260–273

    Google Scholar 

  • Bayer D, Seifert S, Pretzsch H (2013) Structural crown properties of Norway spruce and European beech in mixed versus pure stands revealed by terrestrial laser scanning. Trees 27(4):1035–1047

    Article  Google Scholar 

  • Belsky AJ, Canham CD (1994) Forest gaps and isolated savanna trees. Bioscience 44(2):77–84

    Article  Google Scholar 

  • Binkley D, Stape JL, Ryan MG (2004) Thinking about efficiency of resource use in forests. For Ecol Manag 193:5–16

    Article  Google Scholar 

  • Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Michalet R (2008) Facilitation in plant communities: the past, the present, and the future. J Ecol 96(1):18–34

    Google Scholar 

  • Brown GS (1965) Point density in stems per acre, vol 38. New Zealand Forest Research Note, Wellington, New Zealand

    Google Scholar 

  • Caldwell MM, Richards JH (1989) Hydraulic lift: water efflux from upper roots improves effectiveness of water uptake by deep roots. Oecologia 79(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78(7):1958–1965

    Article  Google Scholar 

  • Canham CD, Finzi AC, Pacala SW, Burbank DH (1994) Causes and consequences of resource heterogeneity in forests: interspecific variation in light transmission by canopy trees. Can J For Res 24(2):337–349

    Article  Google Scholar 

  • Canham CD, LePage PT, Coates KD (2004) A neighborhood analysis of canopy tree competition: effects of shading versus crowding. Can J For Res 34(4):778–787

    Article  Google Scholar 

  • Christmann (1939) Ertragstafel für den Kiefern-Fichten-Mischbestand. In: Wiedemann E (ed) Ertragstafeln wichtiger Holzarten bei verschiedener Durchforstung sowie einiger Mischbestandsformen. Schaper Verlag, Hannover, p 100

    Google Scholar 

  • Comeau PG, Kimmins JP (1989) Above- and below-ground biomass and production of Lodgepole pine on sites with differing soil moisture regimes. Can J For Res 19:447–454

    Article  Google Scholar 

  • Connell JH (1990) Apparent versus “real” competition in plants. In: Grace JB, Tilman D (eds) Perspectives on plant competition. Academic Press, San Diego, pp 9–26

    Google Scholar 

  • Dieler J, Pretzsch H (2013) Morphological plasticity of European beech (Fagus sylvatica L.) in pure and mixed-species stands. For Ecol Manag 295:97–108

    Article  Google Scholar 

  • Dirnberger GF, Sterba H (2014) A comparison of different methods to estimate species proportions by area in mixed stands. For Syst 23(3):534–546

    Google Scholar 

  • Enquist BJ, Brown JH, West GB (1998) Allometric scaling of plant energetics and population density. Nature 395:163–165

    Article  CAS  Google Scholar 

  • Enquist BJ, West GB, Brown JH (2009) Extension and evaluations of a general quantitative theory of forest structure and dynamics. Proc Natl Acad Sci U S A 106(17):7046–7051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faber PJ (1981) Die Standflächenschätzung über den Distanzfaktor. In: Proc Dt Verb Forstl Forschungsanst. Sek Ertragskd, Soest, pp 87–95

    Google Scholar 

  • Faber PJ (1983) Concurrentie en groei van de bomen binnen een opstand (Konkurrenz und Wachstum der Bäume in einem Waldbestand). Pijksinstituut voor onderzoek in de bos- en landschapsbouw “De Dorschkamp”, vol 18(1). Uitvoerig verslag, Wageningen

    Google Scholar 

  • Forrester DI (2013) The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process. For Ecol Manag. doi:10.1016/j.foreco.2013.10.003

    Google Scholar 

  • Forrester DI (2014) A stand-level light interception model for horizontally and vertically heterogeneous canopies. Ecol Model 276:14–22

    Article  Google Scholar 

  • Forrester DI, Bauhus J, Cowie AL, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For Ecol Manag 233:211–230

    Article  Google Scholar 

  • Forrester DI, Bauhus J, Cowie AL, Mitchell PA, Brockwell J (2007) Productivity of three young mixed-species plantations containing N2-fixing Acacia and non-N2-fixing Eucalyptus and Pinus trees in Southeastern Australia. For Sci 53(3):426–434

    Google Scholar 

  • Fraser AR (1977) Triangle based probability polygons for forest sampling. For Sci 23(1):111–121

    Google Scholar 

  • Gaiser RN (1952) Root channels and roots in forest soils. Soil Sci Soc Am J 16(1):62

    Article  Google Scholar 

  • Goisser M, Geppert U, Rötzer T, Paya A, Huber A, Kerner R, Bauerle T, Pretzsch H, Pritsch K, Häberle K-H, Matyssek R, Grams TEE (2016) Does belowground interaction with Fagus sylvatica increase drought susceptibility of photosynthesis and stem growth in Picea abies? For Ecol Manag 375:268–278

    Article  Google Scholar 

  • Griess VC, Knoke T (2011) Growth performance, windthrow, and insects: meta-analyses of parameters influencing performance of mixed-species stands in boreal and northern temperate biomes. Can J For Res 41:1141–1158

    Article  Google Scholar 

  • Gspaltl M, Sterba H, O’Hara KL (2012) The relationship between available area efficiency and area exploitation index in an even-aged coast redwood (Sequoia sempervirens) stand. Forestry 85(5):567–577

    Article  Google Scholar 

  • Hari P (1985) Theoretical aspects of eco-physiological research. In: Tigerstedt PMA, Puttonen P, Koski V (eds) Crop physiology of forest trees. Helsinki University Press, Helsinki, pp 21–30. (336 p)

    Google Scholar 

  • Heinsdorf D (1999) Das Revier Sauen – Ein Beispiel für erfolgreichen Waldumbau, Schriftenreihe des Ministeriums für Ernährung, Landwirtschaft und Forsten. vol Band VI. Ministerium für Ernährung, Landwirtschaft und Forsten, Brandenburg, Landesforstanstalt Eberswalde

    Google Scholar 

  • Helms JA (1998) The dictionary of forestry. The Society of American Foresters, Bethesda, MD

    Google Scholar 

  • Jack WH (1968) Single trees sampling in evenaged plantations for survey and experimentation. In: 14th IUFRO Congress, München, pp 379–403

    Google Scholar 

  • Kelty MJ (1992) Comparative productivity of monocultures and mixed stands. In: Kelty MJ, Larson BC, Oliver CD (eds) The ecology and silviculture of mixed-species forests. Kluwer Academic, Dordrecht, pp 125–141

    Chapter  Google Scholar 

  • Keyes MR, Grier CC (1981) Above-and below-ground net production in 40-years-old Douglas-fir stands on low and high productivity sites. Can J For Res 11:599–605

    Article  Google Scholar 

  • Kimmins JP (1993) Scientific foundations for the simulation of ecosystem function and management in FORCYTE-11. Forestry Canada, Northern Forestry Centre, Edmonton, Alberta

    Google Scholar 

  • Kleiber M (1947) Body size and metabolic rate. Physiol Rev 27(4):511–541

    CAS  PubMed  Google Scholar 

  • Knoke T, Hahn A (2007) Baumartenvielfalt und Produktionsrisiken: Ein Forschungseinblick und-ausblick – Diversity of tree species and risk: A research insight and outlook. Schweizerische Zeitschrift fur Forstwesen 158(10):312–322

    Article  Google Scholar 

  • Kuoch R (1972) Zur Struktur und Behandlung von subalpinen Fichtenwäldern. Schweiz Z Forstwes 123:77–89

    Google Scholar 

  • Larocque GR, Luckai N, Adhikary SN, Groot A, Bell FW, Sharma M (2013) Competition theory-science and application in mixed forest stands: review of experimental and medelling methods and suggestions for future research. Environ Rev 21:71–84

    Article  Google Scholar 

  • Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze E-D, McGuire AD, Bozzato F, Pretzsch H, de-Miguel S, Paquette A, Hérault B, Scherer-Lorenzen M, Barrett CB, Glick HB, Hengeveld GM, Nabuurs G-J, Pfautsch S, Viana H, Vibrans AC, Ammer C, Schall P, Verbyla D, Tchebakova N, Fischer M, Watson JV, HYH C, Lei X, Schelhaas M-J, Lu H, Gianelle D, Parfenova EI, Salas C, Lee E, Lee B, Kim HS, Bruelheide H, Coomes DA, Piotto D, Sunderland T, Schmid B, Gourlet-Fleury S, Sonké B, Tavani R, Zhu J, Brandl S, Vayreda J, Kitahara F, Searle EB, Neldner VJ, Ngugi MR, Baraloto C, Frizzera L, Bałazy R, Oleksyn J, Zawiła-Niedźwiecki T, Bouriaud O, Bussotti F, Finér L, Jaroszewicz B, Jucker T, Valladares F, Jagodzinski AM, Peri PL, Gonmadje C, Marthy W, O’Brien T, Martin EH, Marshall AR, Rovero F, Bitariho R, Niklaus PA, Alvarez-Loayza P, Chamuya N, Valencia R, Mortier F, Wortel V, Engone-Obiang NL, Ferreira LV, Odeke DE, Vasquez RM, Lewis SL, Reich PB (2016) Positive biodiversity-productivity relationship predominant in global forests. Science 354(6309). doi:10.1126/science.aaf8957

  • Matyssek R, Lüttge U (2012) Gaia. The planet holobiont. Nova Acta Leopoldina NF 114(391):325–344

    Google Scholar 

  • Mayer H, Ott E (1991) Gebirgswaldbau Schutzwaldpflege. Gustav Fischer Verlag, Stuttgart, New York

    Google Scholar 

  • McCarthy MC, Enquist BJ (2007) Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct Ecol 21:713–720

    Article  Google Scholar 

  • Møller AP, Swaddle JP (1997) Asymmetry, developmental stability, and evolution. Oxford Serie in ecology and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Nagel J (1985) Wachstumsmodell für Bergahorn in Schleswig-Holstein. Universität Göttingen, 124p

    Google Scholar 

  • Nelder JA (1962) New kinds of systematic designs for spacing experiments. Biometrics 18(3):283–307

    Article  Google Scholar 

  • Niklas KJ (1994) Plant allometry. Univ Chicago Press, Chicago, IL

    Google Scholar 

  • Niklas KJ (2004) Plant allometry: is there a grand unifying theory? Biol Rev 79:871–889

    Article  PubMed  Google Scholar 

  • Nikolova PS, Zang C, Pretzsch H (2011) Combining tree-ring analyses on stems and coarse roots to study the growth dynamics of forest trees: a case study on Norway spruce (Picea abies [L.] H. Karst). Trees 5:859–872

    Article  Google Scholar 

  • Oldemann RAA (1990) Forests: elements of silvology. Springer, Berlin

    Book  Google Scholar 

  • Oliver CD, Larson BC (1996) Forest stand dynamics: Update edition. Wiley, New York

    Google Scholar 

  • Pelz DR (1978) Estimating individual tree growth with tree polygons. Blacksburg, VA

    Google Scholar 

  • Pretzsch H (2005a) Diversity and productivity in forests. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) Forest diversity and function, Ecological studies 176. Springer, Berlin, pp 41–64

    Chapter  Google Scholar 

  • Pretzsch H (2005b) Stand density and growth of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.). Evidence from long-term experimental plots. Eur J For Res 124(3):193–205

    Article  Google Scholar 

  • Pretzsch H (2006) Von der Standfächeneffizienz der Bäume zur Dichte-Zuwachs-Beziehung des Bestandes. Beitrag zur Integration von Baum- und Bestandesebene. Allgemeine Forst- und Jagdzeitung 177:188–199

    Google Scholar 

  • Pretzsch H (2009) Forest dynamics, growth and yield. Springer, Berlin

    Book  Google Scholar 

  • Pretzsch H (2014) Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For Ecol Manag 327:251–264

    Article  Google Scholar 

  • Pretzsch H, Biber P (2005) A re-evaluation of Reinekes rule and stand density index. For Sci 51(4):304–320

    Google Scholar 

  • Pretzsch H, Biber P (2010) Size-symmetric versus size-asymmetric competition and growth partitioning among trees in forest stands along an ecological gradient in central Europe. Can J For Res 40:370–384

    Article  Google Scholar 

  • Pretzsch H, Dieler J (2012) Evidence of variant intra- and interspecific scaling of tree crown structure and relevance for allometric theory. Oecologia 169(3):637–649. doi:10.1007/s00442-011-2240-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Pretzsch H, Schütze G (2005) Crown allometry and growing space efficiency of Norway Spruce (Picea abies [L.] Karst) and European Beech (Fagus sylvatica [L.]) in pure and mixed stands. Plant Biol 7(6):628–640

    Article  CAS  PubMed  Google Scholar 

  • Pretzsch H, Schütze G (2009) Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. Eur J For Res 128:183–204

    Article  Google Scholar 

  • Pretzsch H, Block J, Dieler J, Dong PH, Kohnle U, Nagel J, Spellmann H, Zingg A (2010) Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann For Sci 67:712

    Article  Google Scholar 

  • Pretzsch H, Biber P, Uhl E (2012a) Coarse root-shoot allometry of Pinus radiata modified by site conditions in the Western Cape province of South Africa. Southern Forests 74(4):237–246

    Article  Google Scholar 

  • Pretzsch H, Schütze G, Uhl E (2012b) Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol 15:483–495

    Article  PubMed  Google Scholar 

  • Pretzsch H, Heym M, Pinna S, Schneider R (2014) Effect of variable retention cutting on the relationship between growth of coarse roots and stem of black spruce (Picea mariana (Mill.) Britton). Scand J For Res 29(3):222–233

    Google Scholar 

  • Pretzsch H, Forrester DI, Rötzer T (2015) Representation of species mixing in forest growth models. A review and perspective. Ecol Model 313:276–292

    Article  Google Scholar 

  • Prieto I, Armas C, Pugnaire FI (2012) Water release through plant roots: new insights into its consequences at the plant and ecosystem level. New Phytol 193(4):830–841

    Article  PubMed  Google Scholar 

  • Puhe J (2003) Growth and development of the root system of Norway spruce (Picea abies) in forest stands—a review. For Ecol Manag 175(1):253–273

    Article  Google Scholar 

  • Purves DW, Lichstein JW, Pacala SW (2007) Crown plasticity and competition for canopy space: a new spatially implicit model parameterized for 250 North American tree species. PLoS One 2(e870). doi:10.1371/journal.pone.0000870

  • Reineke LH (1933) Perfecting a stand-density index for even-aged forest. J Agric Res 46:627–638

    Google Scholar 

  • Richards AE, Forrester DI, Bauhus J, Scherer-Lorenzen M (2010) The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiol 30(9):1192–1208

    Article  PubMed  Google Scholar 

  • Roloff A (2001) Baumkronen. Verständnis und praktische Bedeutung eines komplexen Naturphänomens. Ulmer, Stuttgart

    Google Scholar 

  • Rothe A (1997) Einfluß des Baumartenanteils auf Durchwurzelung, Wasserhaushalt, Stoffhaushalt und Zuwachsleistung eines Fichten-Buchen-Mischbestandes am Standort Höglwald. Forstl Forschungsber München 163:174

    Google Scholar 

  • Rothe A, Binkley D (2001) Nutritional interactions in mixed species forests: a synthesis. Can J For Res 31:1855–1870

    Article  Google Scholar 

  • Rubner M (1931) Die Gesetze des Energieverbrauchs bei der Ernährung, vol 16/18. Proc preuß Akad Wiss Physik-Math Kl, Berlin, Wien

    Google Scholar 

  • Ryan MG, Waring RH (1992) Maintenance respiration and stand development in a subalpine lodgepole pine forest. Ecology 73(6):2100–2108

    Article  Google Scholar 

  • Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. Bioscience 47(4):235–242

    Article  Google Scholar 

  • Saha S, Kuehne C, Kohnle U, Brang P, Ehring A, Geisel J, Leder B, Muth M, Petersen R, Peter J, Ruhm W, Bauhus J (2012) Growth and quality of young oaks (Quercus robur and Quercus petraea) grown in cluster plantings in central Europe: a weighted meta-analysis. For Ecol Manag 283:106–118

    Article  Google Scholar 

  • Schober R (1950/51) Zum jahreszeitlichen Ablauf des sekundären Dickenwachstums. Allgemeine Forst- und Jagdzeitung 122:81–96

    Google Scholar 

  • Schütz JP (1989) Zum Problem der Konkurrenz in Mischbeständen. Schweiz Z Forstwes 140(12):1069–1083

    Google Scholar 

  • Smith TM, Smith RL (2009) Elements of ecology. Pearson International Edition, 7th edn. Benjamin Cummings, San Francisco

    Google Scholar 

  • Sterba H, Amateis RL (1998) Crown efficiency in a loblolly pine (Pinus taeda) spacing experiment. Can J For Res 28(9):1344–1351

    Article  Google Scholar 

  • Sterba H, Andrae F, Pambudhi F (1993) Crown efficiency of oak standards as affected by mistletoe and coppice removal. For Ecol Manag 62(1):39–49

    Article  Google Scholar 

  • Stone EL, Kalisz PJ (1991) On the maximum extent of tree roots. For Ecol Manag 46(1–2):59–102

    Article  Google Scholar 

  • Strobel GW (1995) Rottenstruktur und Konkurrenz im subalpinen Fichtenwald

    Google Scholar 

  • Thurm EA, Biber P, Pretzsch H (2016) Tree growth is partitioned in favor of the stem on the expense of the roots for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and European beech (Fagus sylvatica L.) if growing in mixture and under humid conditions. Trees. doi:10.1007/s00468-016-1512-4

  • Uhl E, Biber P, Ulbricht M, Heym M, Horváth T, Lakatos F, Gál J, Steinacker L, Tonon G, Ventura M, Pretzsch H (2015) Analysing the effect of stand density and site conditions on structure and growth of oak species using Nelder trials along an environmental gradient: experimental design, evaluation methods, and results. For Ecosyst 2(1):17

    Article  Google Scholar 

  • Vandermeer J (1992) The ecology of intercropping. Cambridge University Press, Cambridge

    Google Scholar 

  • Verein Deutscher Forstlicher Versuchsanstalten (1873) Anleitung für Durchforstungsversuche. In: von Ganghofer A (ed) Das Forstliche Versuchswesen, vol 2. Schmid’sche Buchhandlung, Augsburg, pp 247–253

    Google Scholar 

  • Verein Deutscher Forstlicher Versuchsanstalten (1902) Beratungen der vom Vereine Deutscher Forstlicher Versuchsanstalten eingesetzten Kommission zur Feststellung des neuen Arbeitsplanes für Durchforstungs- und Lichtungsversuche. Allgemeine Forst- und Jagdzeitung 78:180–184

    Google Scholar 

  • von Bertalanffy L (1951) Theoretische Biologie: II. Band, Stoffwechsel, Wachstum, 2nd edn. A Francke AG, Bern

    Google Scholar 

  • von Lüpke B, Spellmann H (1997) Aspekte der Stabilität und des Wachstums von Mischbeständen aus Fichte und Buche als Grundlage für waldbauliche Entscheidungen. Forstarchiv 68:167–179

    Google Scholar 

  • von Lüpke B, Spellmann H (1999) Aspects of stability, growth and natural regeneration in mixed Norway spruce-beech stands as a basis of silvicultural decisions. In: Olsthoorn AFM, Bartelink HH, Gardiner JJ, Pretzsch H, Hekhuis HJ, Franc A (eds) Management of mixed-species forest: silviculture and economics, vol 15. IBN Scientific Contributions, pp 245–267

    Google Scholar 

  • West GB, Enquist BJ, Brown JH (2009) A general quantitative theory of forest structure and dynamics. Proc Natl Acad Sci U S A 106(17):7040–7045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiedemann E (1942) Der gleichaltrige Fichten-Buchen-Mischbestand. Mitt Forstwirtsch u Forstwiss 13:1–88

    Google Scholar 

  • Wiedemann E (1951) Ertragskundliche und waldbauliche Grundlagen der Forstwirtschaft. Frankfurt am Main

    Google Scholar 

  • Yoder BJ, Ryan MG, Waring RH, Schoettle AW, Kaufmann MR (1994) Evidence of reduced photosynthetic rates in old trees. For Sci 40(3):513–527

    Google Scholar 

  • Zeide B (1985) Tolerance and self-tolerance of trees. For Ecol Manag 13:149–166

    Article  Google Scholar 

  • Zeide B (1998) Fractal analysis of foliage distribution in loblolly pine crowns. Can J For Res 28:106–114

    Article  Google Scholar 

  • Zeller L (2016) Tree ring width and wood density in mixed versus pure stands of Scots pine and European beech. TUM, 39 p

    Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32(5):723–735

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Pretzsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Pretzsch, H. (2017). Individual Tree Structure and Growth in Mixed Compared with Monospecific Stands. In: Pretzsch, H., Forrester, D., Bauhus, J. (eds) Mixed-Species Forests. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54553-9_6

Download citation

Publish with us

Policies and ethics