Skip to main content

From Observations to Evidence About Effects of Mixed-Species Stands

  • Chapter
  • First Online:
Mixed-Species Forests

Abstract

A critical understanding of the scientific evidence that we have about the effects of tree species diversity on ecosystem properties and processes is required to guide practical forest management as well as future research. However, current understanding is limited by the lack of an appropriate framework for evaluating the reported evidence. In this chapter we outline how research on mixed-species forests may fit into concepts of ecosystem hierarchy and how previous studies may be ranked regarding their level of evidence. We introduce the most important hypotheses and theories underpinning research on the relationship between tree diversity and ecosystem functioning and illustrate how these may be tested by analyses of forest inventories, experiments, and exploratory research platforms or a combination of these.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allan TFH, Starr TB (1988) Hierarchy: perspectives for ecological complexity. The University of Chicago Press, Chicago

    Google Scholar 

  • Baeten L, Verheyen K, Wirth C et al (2013) A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests. Perspect Plant Ecol Evol Syst 15:281–291

    Article  Google Scholar 

  • Basset Y, Cizek L, Cuénoud P et al (2012) Arthropod diversity in a tropical forest. Science 338:1481–1484

    Article  CAS  PubMed  Google Scholar 

  • Bauhus J, Khanna PK, Menden N (2000) Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii. Can J For Res 30:1886–1894

    Article  Google Scholar 

  • Bauhus J, van Winden AP, Nicotra AB (2004) Above-ground interactions and productivity in mixed-species plantations of Acacia mearnsii and Eucalyptus globulus. Can J For Res 34:686–694

    Article  Google Scholar 

  • Begon M, Harper JL, Townsend CR (1996) Ecology: individuals, populations and communities. Blackwell Science, Oxford

    Book  Google Scholar 

  • Belote RT, Prisley S, Jones RH et al (2011) Forest productivity and tree diversity relationships depend on ecological context within mid-Atlantic and Appalachian forests (USA). For Ecol Manage 261:1315–1324

    Article  Google Scholar 

  • Bertness MD, Callaway RM (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193

    Article  CAS  PubMed  Google Scholar 

  • Binkley D, Menyailo O (2005) Gaining insights on the effects of tree species on soils. In: Binkley D, Menyailo O (eds) Tree species effects on soils: implications for global change. Kluwer Academic, Dordrecht, pp 1–16

    Chapter  Google Scholar 

  • Brang P, Spathelf P, Larsen JB et al (2014) Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 87:492–503

    Article  Google Scholar 

  • Brooker RW (2006) Plant-plant interactions and environmental change. New Phytol 171:271–284

    Article  PubMed  Google Scholar 

  • Bruelheide H, Nadrowski K, Assmann T et al (2014) Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods Ecol Evol 5:74–89

    Article  Google Scholar 

  • Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH (2009) Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS One 4:e5695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78:1958–1965

    Article  Google Scholar 

  • Caspersen JP, Pacala SW (2001) Successional diversity and forest ecosystem function. Ecol Res 16:895–903

    Article  Google Scholar 

  • Castagneyrol B, Giffard B, Péré C, Jactel H (2013) Plant apparency, an overlooked driver of associational resistance to insect herbivory. J Ecol 101:418–442

    Article  Google Scholar 

  • Castagneyrol B, Jactel H, Vacher C et al (2014) Effects of plant phylogenetic diversity on herbivory depend on herbivore specialization. J Appl Ecol 51:134–141

    Article  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E (2003) Handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Corona P, Chirici G, McRoberts RE (2011) Contribution of large-scale forest inventories to biodiversity assessment and monitoring. For Ecol Manage 262:2061–2069

    Article  Google Scholar 

  • Cotta H (1828) Anweisung zum Waldbau, 4th edn. Arnoldische Buchhandlung, Dresden Leipzig, 413 p

    Google Scholar 

  • Dayton PK (1972) Toward an understanding of community resilience and the potential effects of enrichments to the benthos at McMurdo Sound, Antarctica. In: Proceedings of the colloquium on conservation problems in Antarctica. Allen Press, Lawrence, KS, pp 81–95

    Google Scholar 

  • Díaz S, Symstad AJ, Chapin IS et al (2003) Functional diversity revealed by removal experiments. Trends Ecol Evol 18:140–146

    Article  Google Scholar 

  • Ellison AM, Bank MS, Clinton BD (2005) Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front Ecol Environ 3:479–486

    Article  Google Scholar 

  • Erwin TL (1982) Tropical forests: their richness in Coleoptera and other arthropod species. Coleopt Bull 36:74–75

    Google Scholar 

  • Firn J, Erskine PD, Lamb D (2007) Woody species diversity influences productivity and soil nutrient availability in tropical plantations. Oecologia 154:521–533

    Article  PubMed  Google Scholar 

  • Floren A, Müller T, Dittrich M et al (2014) The influence of tree species, stratum and forest management on beetle assemblages responding to deadwood enrichment. For Ecol Manage 323:57–64

    Article  Google Scholar 

  • Flynn DF, Mirotchnick N, Jain M et al (2011) Functional and phylogenetic diversity as predictors of biodiversity-ecosystem-function relationships. Ecology 92:1573–1581

    Article  PubMed  Google Scholar 

  • Forrester DI (2014) The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process. For Ecol Manage 312:282–292

    Article  Google Scholar 

  • Forrester DI (2015) Transpiration and water-use efficiency in mixed-species forests versus monocultures: effects of tree size, stand density and season. Tree Physiol 35:289–304

    Article  PubMed  Google Scholar 

  • Forrester DI, Pretzsch H (2015) Tamm Review: on the strength of evidence when comparing ecosystem functions of mixtures with monocultures. For Ecol Manage 356:41–53

    Article  Google Scholar 

  • Forrester DI, Bauhus J (2016) A review of processes behind diversity – productivity relationships in forests. Curr For Rep 2:45–61

    Article  CAS  Google Scholar 

  • Forrester DI, Bauhus J, Khanna PK (2004) Growth dynamics in a mixed species plantation of Eucalyptus globulus and Acacia mearnsii. For Ecol Manage 193:81–95

    Article  Google Scholar 

  • Forrester DI, Bauhus J, Cowie AL, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For Ecol Manage 233:211–230

    Article  Google Scholar 

  • Forrester DI, Kohnle U, Albrecht AT, Bauhus J (2013) Complementarity in mixed-species stands of Abies alba and Picea abies varies with climate, site quality and stand density. For Ecol Manage 304:233–242

    Article  Google Scholar 

  • Gamfeldt L, Snäll T, Bagchi R et al (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun 4:340

    Article  CAS  Google Scholar 

  • Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246

    Article  Google Scholar 

  • Goßner M, Ammer U (2006) The effects of Douglas-fir on tree-specific arthropod communities in mixed species stands with European beech and Norway spruce. Eur J For Res 125:221–235

    Article  Google Scholar 

  • Grime JP (2006) Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. J Veg Sci 17:225–260

    Article  Google Scholar 

  • Grossiord C, Granier A, Ratcliffe S et al (2014) Tree diversity does not always improve resistance of forest ecosystems to drought. Proc Natl Acad Sci U S A 111:14812–14815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press, London. 892 p

    Google Scholar 

  • He Q, Bertness MD, Altieri AH (2013) Global shifts towards positive species interactions with increasing environmental stress. Ecol Lett 16:695–706

    Article  PubMed  Google Scholar 

  • Hector A, Schmid B, Beierkuhnlein C et al (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127

    Article  CAS  PubMed  Google Scholar 

  • Hillebrand H, Matthiessen B (2009) Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecol Lett 12:1405–1419

    Article  PubMed  Google Scholar 

  • Holmgren M, Scheffer M (2010) Strong facilitation in mild environments: the stress gradient hypothesis revisited. J Ecol 98:1269–1275

    Article  Google Scholar 

  • Holmgren M, Scheffer M, Huston MA (1997) The interplay of facilitation and competition in plant communities. Ecology 78:1966–1975

    Article  Google Scholar 

  • Hooper DU, Chapin FSI, Ewel JJ et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge and needs for future research. Ecol Monogr 75:3–36

    Article  Google Scholar 

  • Hutchinson MF (1957) Concluding remarks. In: Cold Spring Harbour symposia on quantitative biology, vol. 22, Population studies: animal ecology and demography. Cold Spring Harbor, New York, NY, pp 415–427

    Google Scholar 

  • Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer–broadleaf forests. New Phytol 174:430–440

    Article  CAS  PubMed  Google Scholar 

  • Jactel H, Brockerhoff EG (2007) Tree diversity reduces herbivory by forest insects. Ecol Lett 10:835–848

    Article  PubMed  Google Scholar 

  • Jucker T, Bouriaud O, Coomes DA (2015) Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct Ecol 29:1078–1086

    Article  Google Scholar 

  • Kattge J, Diaz S, Lavorel S et al (2011) TRY–a global database of plant traits. Glob Chang Biol 17:2905–2935

    Article  PubMed Central  Google Scholar 

  • Kelty MJ (1992) Comparative productivity of monocultures and mixed-species stands. In: Kelty MJ, Larson BC, Oliver CD (eds) The ecology and silviculture of mixed-species forests. Kluwer Academic, Dordrecht, pp 125–141

    Chapter  Google Scholar 

  • Kunstler G, Lavergne S, Courbaud B et al (2012) Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly. Ecol Lett 15:831–840

    Article  PubMed  PubMed Central  Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    Article  PubMed  Google Scholar 

  • Lang AC, Oheimb G, Scherer-Lorenzen M et al (2014) Mixed afforestation of young subtropical trees promotes nitrogen acquisition and retention. J Appl Ecol 51:224–233

    Article  CAS  Google Scholar 

  • Lavorel S, McIntyre S, Landsberg J, Forbes TDA (1997) Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol Evol 12:474–478

    Article  CAS  PubMed  Google Scholar 

  • Lei P, Scherer-Lorenzen M, Bauhus J (2012) Belowground facilitation and competition in young tree species mixtures. For Ecol Manage 265:191–200

    Article  Google Scholar 

  • Leuschner C, Jungkunst HF, Fleck S (2009) Functional role of forest diversity: pros and cons of synthetic stands and across-site comparisons in established forests. Basic Appl Ecol 10:1–9

    Article  Google Scholar 

  • Liang J, Crowther TW, Picard N et al (2016) Positive biodiversity–productivity relationship predominant in global forests. Science 354. doi:10.1126/science.aaf8957

  • Lodge DJ (1997) Factors related to diversity of decomposer fungi in tropical forests. Biodivers Conserv 6:681–688

    Article  Google Scholar 

  • Looijen RC (1998) Holism and reductionism in biology and ecology: the mutual dependence of higher and lower level research programmes. PhD thesis, University of Groningen. http://www.rug.nl/research/portal/files/10660346/thesis.pdf!null

  • Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76

    Article  CAS  PubMed  Google Scholar 

  • Maestre FT, Callaway RM, Valladares F, Lortie CJ (2009) Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J Ecol 97:199–205

    Article  Google Scholar 

  • Man R, Lieffers VJ (1999) Are mixtures of aspen and white spruce more productive than single species stands? For Chron 75:505–513

    Article  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  PubMed  Google Scholar 

  • Messier C, Puettmann KJ, Coates KD (eds) (2013) Managing forests as complex adaptive systems: building resilience to the challenge of global change. Routledge, The Earthscan Forest Library

    Google Scholar 

  • Möller A (1922) Der Dauerwaldgedanke – Sein Sinn und seine Bedeutung. Springer, Berlin, 136 p

    Google Scholar 

  • Morin X, Lechowicz MJ (2008) Contemporary perspectives on the niche that can improve models of species range shifts under climate change. Biol Lett 4:573–576

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller F (1992) Hierarchical approaches to ecosystem theory. Ecol Model 63:215–242

    Article  Google Scholar 

  • Nadrowski K, Wirth C, Scherer-Lorenzen M (2010) Is forest diversity driving ecosystem function and service? Curr Opin Environ Sustain 2:75–79

    Article  Google Scholar 

  • Naeem S (2002) Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology 83:1537–1552

    Article  Google Scholar 

  • Örlander G (1993) Shading reduces both visible and invisible frost damage to Norway spruce seedlings in the field. Forestry 66:27–36

    Article  Google Scholar 

  • Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr 20:170–180

    Article  Google Scholar 

  • Pastor J, Mladenoff DJ, Haila Y, et al (1996) Biodiversity and ecosystem processes in boreal regions. Scope – Scientific Committee on Problems of the Environment International Council of Scientific Unions 55:33–69

    Google Scholar 

  • Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–411

    Article  Google Scholar 

  • Petrokofsky G, Kanamaru H, Achard F et al (2012) Comparison of methods for measuring and assessing carbon stocks and carbon stock changes in terrestrial carbon pools. How do the accuracy and precision of current methods compare? A systematic review protocol. Environ Evid 1:6

    Article  Google Scholar 

  • Piotto D (2008) A meta-analysis comparing tree growth in monocultures and mixed plantations. For Ecol Manage 255:781–786

    Article  Google Scholar 

  • Poorter L (2007) Are species adapted to their regeneration niche, adult niche, or both? Am Nat 169:433–442

    Article  PubMed  Google Scholar 

  • Potvin C, Gotelli NJ (2008) Biodiversity enhances individual performance but does not affect survivorship in tropical trees. Ecol Lett 11:217–223

    Article  PubMed  Google Scholar 

  • Pretzsch H (1995) Analyse und Reproduktion räumlicher Betandesstrukturen – Methodische Überlegungen am Beispiel niedersächsischer Buchen-Lärchen-Mischbestände. Centralbl Gesamte Forstwesen 112:91–117

    Google Scholar 

  • Pretzsch H (1997) Analysis and modeling of spatial stand structures. Methodological considerations based on mixed beech-larch stands in Lower Saxony. For Ecol Manage 97(3):237–253

    Article  Google Scholar 

  • Pretzsch H (2005) Diversity and productivity in forests: evidence from long-term experimental plots. In: Scherer-Lorenzen M, Körner C, Schulze ED (eds) Forest diversity and function: temperate and boreal systems. Springer, Berlin, pp 41–64

    Chapter  Google Scholar 

  • Pretzsch H (2009) Forest dynamics, growth and yield. Springer, Berlin, 664 p

    Google Scholar 

  • Pretzsch H, Schütze G (2009) Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. Eur J For Res 128:183–204

    Article  Google Scholar 

  • Pretzsch H, Bielak K, Block J et al (2013) Productivity of pure versus mixed stands of oak (Quercus petraea (MATT.) LIEBL. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. Eur J For Res 132:263–280

    Article  Google Scholar 

  • Pretzsch H, Biber P, Schütze G et al (2014) Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat Commun 5:4967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pretzsch H, Del Río M, Ammer C et al (2015) Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. Eur J For Res 134:927–947

    Article  Google Scholar 

  • Purahong W, Hoppe B, Kahl T et al (2014) Changes within a single land-use category alter microbial diversity and community structure: molecular evidence from wood-inhabiting fungi in forest ecosystems. J Environ Manage 139:109–119

    Article  CAS  PubMed  Google Scholar 

  • Reich PB, Ellsworth DS, Walters MB et al (1999) Generality of leaf trait relationships: a test across six biomes. Ecology 80:1955–1969

    Article  Google Scholar 

  • Richards AE, Forrester DI, Bauhus J, Scherer-Lorenzen M (2010) The influence of mixed species tree plantations on the nutrition of individual species: a review. Tree Physiol 30:1192–1208

    Article  PubMed  Google Scholar 

  • Rothe A, Binkley D (2001) Nutritional interactions in mixed species forests: a synthesis. Can J For Res 31:1855–1870

    Article  Google Scholar 

  • Scherer-Lorenzen M, Körner C, Schulze ED (eds) (2005a) Forest diversity and function: temperate and boreal systems. Springer, Berlin

    Google Scholar 

  • Scherer-Lorenzen M, Potvin C, Koricheva J et al (2005b) The design of experimental tree plantations for functional biodiversity research. In: Scherer-Lorenzen M, Körner C, Schulze ED (eds) Forest diversity and function: temperate and boreal systems. Springer, Berlin, pp 347–376

    Chapter  Google Scholar 

  • Scherer-Lorenzen M, Schulze ED, Don A et al (2007) Exploring the functional significance of forest diversity: a new long-term experiment with temperate tree species (BIOTREE). Perspect Plant Ecol Evol Syst 9:53–70

    Article  Google Scholar 

  • Schmid I, Kazda M (2001) Vertical distribution and radial growth of coarse roots in pure and mixed stands of Fagus sylvatica and Picea abies. Can J For Res 31:539–548

    Article  Google Scholar 

  • Schreuder HT, Gregoire TG, Wood GB (1993) Sampling methods for multiresource forest inventory. Wiley, New York, 464 p

    Google Scholar 

  • Schulze ED, Mooney HA (1993) Biodiversity and ecosystem function. Springer, Berlin, Heidelberg, 525 p

    Book  Google Scholar 

  • Schwendenmann L, Pendall E, Sánchez BR et al (2014) Tree water uptake in a tropical plantation varying in tree diversity: interspecific differences, seasonal shifts and complementarity. Ecohydrology 8. doi:10.1002/eco.1479

  • Scowcroft PG, Meinzer FC, Goldstein G et al (2000) Moderating night radiative cooling reduces frost damage to Metrosideros polymorpha seedlings used for forest restoration in Hawaii. Restor Ecol 8:161–169

    Article  Google Scholar 

  • Sole RV, Montoya M (2001) Complexity and fragility in ecological networks. Proc R Soc Lond B Biol Sci 268(1480):2039–2045

    Article  CAS  Google Scholar 

  • Southwood TRE, Wint GW, Kennedy CE, Greenwood SR (2004) Seasonality abundance, species richness and specificity of the phytophagous guild of insects on oak (Quercus) canopies. Eur J Entomol 101:43–50

    Article  Google Scholar 

  • Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (1996) Growth trends in European forests: studies from 12 countries. Springer, Heidelberg, 372 p

    Book  Google Scholar 

  • Stachowicz JJ (2001) Mutualism, facilitation, and the structure of ecological communities. Bioscience 51:235–246

    Article  Google Scholar 

  • Stork NE (1988) Insect diversity: facts, fiction and speculation. Biol J Linn Soc 35:321–337

    Article  Google Scholar 

  • Sutherland WJ, Pullin AS, Dolman PM, Knight TM (2004) The need for evidence-based conservation. Trends Ecol Evol 19:305–308

    Article  PubMed  Google Scholar 

  • Swenson NG, Enquist BJ (2009) Opposing assembly mechanisms in a Neotropical dry forest: implications for phylogenetic and functional community ecology. Ecology 90:2161–2170

    Article  PubMed  Google Scholar 

  • Tham Å (1994) Crop plans and yield predictions for Norway spruce (Picea abies (L.) Karst.) and birch (Betula pendula Roth & Betula pubescens Ehrh.) mixtures. Studia Forestalia Suecica 195

    Google Scholar 

  • Tilman D (1996) Biodiversity: population versus ecosystem stability. Ecology 77:350–363

    Article  Google Scholar 

  • Tilman D, Knops J, Wedin D et al (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

    Article  CAS  Google Scholar 

  • Tobner CM, Paquette A, Reich PB et al (2014) Advancing biodiversity–ecosystem functioning science using high-density tree-based experiments over functional diversity gradients. Oecologia 174:609–621

    Article  PubMed  Google Scholar 

  • Toïgo M, Vallet P, Perot T et al (2015) Overyielding in mixed forests decreases with site productivity. J Ecol 103:502–512

    Article  Google Scholar 

  • Ulrich B (1994) Process hierarchy in forest ecosystems: an integrative ecosystem theory. In: Godbold DL, Hüttermann A (eds) Effects of acid rain on forest processes. Wiley-Liss, New York, pp 353–398

    Google Scholar 

  • Unterseher M, Otto P, Morawetz W (2005) Species richness and substrate specificity of lignicolous fungi in the canopy of a temperate, mixed deciduous forest. Mycol Prog 4:117–132

    Article  Google Scholar 

  • Vandermeer JH (1989) The ecology of intercropping. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • van der Plas F, Manning P, Allan E et al (2016) ‘Jack-of-all-trades’ effects drive biodiversity-ecosystem multifunctionality relationships in European forests. Nat Commun 7:11109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vázquez DP, Melián CJ, Williams NM et al (2007) Species abundance and asymmetric interaction strength in ecological networks. Oikos 116:1120–1127

    Article  Google Scholar 

  • Verheyen K, Vanhellemont M, Auge H et al (2016) Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio 45:29–41

    Article  CAS  PubMed  Google Scholar 

  • Vilà M, Inchausti P, Vayreda J et al (2005) Confounding factors in the observational productivity – diversity relationship in forests. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) Forest diversity and function: temperate and boreal systems. Springer, Berlin, pp 65–86

    Chapter  Google Scholar 

  • Vilà M, Vayreda J, Comas L et al (2007) Species richness and wood production: a positive association in Mediterranean forests. Ecol Lett 10:241–250

    Article  PubMed  Google Scholar 

  • Vilà M, Carrillo-Gavilá A, Vayreda J et al (2013) Disentangling biodiversity and climatic determinants of wood production. PLoS One 8:e53530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Violle C, Jiang L (2009) Towards a trait-based quantification of species niche. J Plant Ecol 2(2):87–93

    Article  Google Scholar 

  • Wardle DA (1999) Is “Sampling Effect” a problem for experiments investigating biodiversity-ecosystem function relationships? Oikos 87:403–407

    Article  Google Scholar 

  • Wardle DA (2016) Do experiments exploring plant diversity–ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? J Veg Sci 27:646–653

    Article  Google Scholar 

  • Wein A, Bauhus J, Bilodeau-Gauthier S et al (2016) Tree species richness promotes invertebrate herbivory on congeneric native and exotic tree saplings in a young diversity experiment. PLoS One 11(12):e0168751

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiedemann E (1942) Der gleichaltrige Fichten-Buchen-Mischbestand. Schaper Verlag, Hannover, 88 p

    Google Scholar 

  • de Wit CT (1960) On competition. Verslagen Landbouwkundige Onderzoekingen 66:1–82

    Google Scholar 

  • Winfree R, Fox JW, Williams NM et al (2015) Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol Lett 18:626–635

    Article  PubMed  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci U S A 96:57–64

    Article  Google Scholar 

  • Yang X, Bauhus J, Both S et al (2013) Establishment success in a forest biodiversity and ecosystem functioning experiment in subtropical China (BEF-China). Eur J For Res 132:593–606

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Bauhus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Bauhus, J., Forrester, D.I., Pretzsch, H. (2017). From Observations to Evidence About Effects of Mixed-Species Stands. In: Pretzsch, H., Forrester, D., Bauhus, J. (eds) Mixed-Species Forests. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54553-9_2

Download citation

Publish with us

Policies and ethics