Skip to main content

Perspectives for Future Research on Mixed-Species Systems

  • Chapter
  • First Online:
Book cover Mixed-Species Forests

Abstract

This chapter proposes how to supplement and integrate existing knowledge in order to proceed from rather fragmentary mosaic pieces of knowledge to a more substantial base for ecology and management of mixed-species stands. First we sketch how the empirical basis and understanding of mixed-species stand structure and dynamics may be systematically improved through concepts, answering the right questions, and experimental approaches. We then outline how better knowledge might be acquired from experiments and inventories in future. In addition we sketch the necessary next steps from the description and analysis of ecological functioning of mixed-species stands to systematically designing mixed-species stands. The subsequent sections address the limited body of scientific knowledge on the effects of mixing native and exotic tree species and the importance of interactions between trees and other crops for integrated land use. To better understand the economic effects of mixed and uneven-aged stands, research is required into the economic efficacy of mixed-forest management, non-probabilistic approaches to economic uncertainty, and economies of scale, which have largely been neglected in economic analyses so far. The final section addresses how changes experienced by tree species under climate change can be predicted and modelled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ammer U, Schubert H (1999) Arten-, Prozeß- und Ressourcenschutz vor dem Hintergrund faunistischer Untersuchungen im Kronenraum des Waldes. Forstw Cbl 118:70–87

    Article  Google Scholar 

  • Amoroso MM, Turnblom EC (2006) Comparing productivity of pure and mixed Douglas-fir and western hemlock plantations in the Pacific Northwest. Can J For Res 36(6):1484–1496

    Article  Google Scholar 

  • Ares A, Fownes JH (1999) Water supply regulates structure, productivity, and water use efficiency of Acacia koa forest in Hawaii. Oecologia 121(4):458–466

    Article  CAS  PubMed  Google Scholar 

  • Ashton P, Gamage S, Gunatilleke I, Gunatilleke C (1998) Using Caribbean pine to establish a mixed plantation: testing effects of pine canopy removal on plantings of rain forest tree species. For Ecol Manag 106(2–3):211–222. doi:10.1016/S0378-1127(97)00314-9

    Article  Google Scholar 

  • Assmann E (1970) The principles of forest yield study. Pergamon Press, Oxford, NY, 506 p

    Google Scholar 

  • Bauhus J, Khanna PK, Menden N (2000) Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii. Can J For Res 30(12):1886–1894. doi:10.1139/x00-141

    Article  Google Scholar 

  • Ben-Tal A, Nemirovski A (2000) Robust solutions of linear programming problems contaminated with uncertain data. Math Program 88:411–424

    Article  Google Scholar 

  • Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52:35–53

    Article  Google Scholar 

  • Bourdier T, Cordonnier T, Kunstler G, Piedallu C, Lagarrigues G, Courbaud B (2016) Tree size inequality reduces forest productivity: an analysis combining inventory data for ten European species and a light competition model. PLoS One 11(3):e0151852

    Article  PubMed  PubMed Central  Google Scholar 

  • Bremer L, Farley K (2010) Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodivers Conserv 19(14):3893–3915. doi:10.1007/s10531-010-9936-4

    Article  Google Scholar 

  • Brockerhoff EG, Jactel H, Parrotta JA, Quine CP, Sayer J (2008) Plantation forests and biodiversity: oxymoron or opportunity? Biodivers Conserv 17(5):925–951. doi:10.1007/s10531-008-9380-x

    Article  Google Scholar 

  • Brus DJ, Hengeveld GM, Walvoort DJJ, Goedhart PW, Heidema AH, Nabuurs GJ, Gunia K (2011) Statistical mapping of tree species over Europe. Eur J For Res 131(1):145–157

    Article  Google Scholar 

  • Condés S, del Rio M, Sterba H (2013) Mixing effect on volume growth of Fagus sylvatica and Pinus sylvestris is modulated by stand density. For Ecol Manag 292:86–95

    Article  Google Scholar 

  • Condés S, Vallet P, Bielak K, Bravo-Oviedo A, Coll L, Ducey M, Pach M, Pretzsch H, Sterba H, Vayreda J, del Rio M (2016) Climate influences on the maximum size density relationship in Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands. For Ecol Manag 385:295–307. doi:10.1016/j.foreco.2016.10.059

    Article  Google Scholar 

  • Cubbage F, Mac Donagh P, Sawinski Junior J, Rubilar R, Donoso P, Ferreira A, Hoeflich V, Morales Olmos V, Ferreira G, Balmelli G, Siry J, Noemi Baez M, Alvarez J (2007) Timber investment returns for selected plantations and native forests in South America and the Southern United States. New For 33:237–255

    Article  Google Scholar 

  • Dănescu A, Albrecht AT, Bauhus J (2016) Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia 182:1–15

    Article  Google Scholar 

  • Dirnberger G, Sterba H, Condés S, Ammer C, Annighöfer P, Avdagic A, Bielak K, Brazaitis G, Coll L, Heym M, Hurt V, Kurylyak V, Motta R, Pach M, Ponette Q, Ruiz-Peinado R, Skrzyszewski J, Šrámek V, Streel G, Svoboda M, Zlatanov T, Pretzsch H (2016) Species proportions by area in mixtures of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) Eur J For Res 136:1–13

    Google Scholar 

  • Evans J, Turnbull JW (2004) Plantation forestry in the tropics: the role, silviculture, and use of planted forests for industrial, social, environmental and agroforestry purposes, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • FAO (2010) Global forest resources assessment 2010: main report. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Ferris R, Peace AJ, Humphrey JW, Broome AC (2000) Relationships between vegetation, site type and stand structure in coniferous plantations in Britain. For Ecol Manag 136(1):35–51

    Article  Google Scholar 

  • Feyera S, Beck E, Lüttge U (2002) Exotic trees as nurse-trees for the regeneration of natural tropical forests. Trees 16(4):245–249. doi:10.1007/s00468-002-0161-y

    Article  Google Scholar 

  • Forrester DI, Pretzsch H (2015) Tamm review: on the strength of evidence when comparing ecosystem functions of mixtures with monocultures. For Ecol Manage 356:41–53

    Article  Google Scholar 

  • Griess VC, Acevedo R, Härtl F, Staupendahl K, Knoke T (2012) Does mixing tree species enhance stand resistance against natural hazards? A case study for spruce. For Ecol Manag 267:284–296

    Article  Google Scholar 

  • Gritti ES, Drössler L, Gary C, Mason B, Morin X, Pretzsch H, Jactel H (unpublished) Diversity-productivity: looking for a unified theory through meta-analysis

    Google Scholar 

  • Hanewinkel M, Cullmann DA, Schelhaas M-J, Nabuurs G-J, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Chang 3(3):203–207. doi:10.1038/nclimate1687

    Article  Google Scholar 

  • Hardiman BS, Bohrer G, Gough CM, Vogel CS, Curtis PS (2011) The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology 92:1818–1827

    Article  PubMed  Google Scholar 

  • Hardiman BS, Gough CM, Halperin A, Hofmeister KL, Nave LE, Bohrer G, Curtis PS (2013) Maintaining high rates of carbon storage in old forests: a mechanism linking canopy structure to forest function. For Ecol Manag 298:111–119

    Article  Google Scholar 

  • Hildebrandt P (2011) Die Wahl von Baumartenmischungen als forstökonomische Entscheidung unter Unsicherheit. Bewertungsbeispiele aus der Waldwirtschaft in Chile. Freising, PhD thesis Center of Life and Food Sciences Weihenstephan, p 210

    Google Scholar 

  • Hildebrandt P, Knoke T (2011) Investment decisions under uncertainty – a methodological review on forest science studies. For Policy Econ 13:1–15

    Article  Google Scholar 

  • Hildebrandt P, Kirchlechner P, Hahn A, Knoke T, Rodrigo Mujica H (2010) Mixed species plantations in Southern Chile and the risk of timber price fluctuation. Eur J For Res 129(5):935–946. doi:10.1007/s10342-009-0284-4

    Article  Google Scholar 

  • Kawaletz H, Mölder I, Zerbe S, Annighöfer P, Terwei A, Ammer C (2013) Exotic tree seedlings are much more competitive than natives but show underyielding when growing together. J Plant Ecol 6(4):305–315. doi:10.1093/jpe/rts044

    Article  Google Scholar 

  • Knoke T, Schneider T, Hahn A, Grieß VC, Roessiger J (2012). Forstbetriebsplanung als Entscheidungshilfe. Ulmer, Stuttgart. isbn:9783800176113

    Google Scholar 

  • Knoke T, Paul C, Härtl F, Castro LM, Calvas B, Hildebrandt P (2015) Optimizing agricultural land-use portfolios with scarce data – a non-stochastic model. Ecol Econ 120:250–259. doi:10.1016/j.ecolecon.2015.10.021

    Article  Google Scholar 

  • Knoke T, Paul C, Hildebrandt P, Calvas B, Castro LM, Härtl F, Döllerer M, Hamer U, Windhorst D, Wiersma YF, Curatola Fernandez GF, Obermeier WA, Adams J, Breuer L, Mosandl R, Beck E, Weber M, Stimm B, Haber W, Fürst C, Bendix J (2016) Compositional diversity of rehabilitated tropical lands supports multiple ecosystem services and buffers uncertainties. Nat Commun 7:11877. doi:10.1038/ncomms11877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson AJ, Lutz JA, Gersonde RF, Franklin JF, Hietpas FF (2008) Potential site productivity influences the rate of forest structural development. Ecol Appl 18(4):899–910

    Article  PubMed  Google Scholar 

  • Le Maitre DC, Gaertner M, Marchante E, Ens E-J, Holmes PM, Pauchard A, O’Farrell PJ, Rogers AM, Blanchard R, Blignaut J, Richardson DM (2011) Impacts of invasive Australian acacias: implications for management and restoration. Divers Distrib 17(5):1015–1029. doi:10.1111/j.1472-4642.2011.00816.x

    Article  Google Scholar 

  • Letcher BH, Priddy JA, Walters JR, Crowder LB (1998) An individual-based, spatially-explicit simulation model of the population dynamics of the endangered red-cockaded woodpecker, Picoides borealis. Biol Conserv 86:1–14

    Article  Google Scholar 

  • Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze E-D, McGuire AD, Bozzato F, Pretzsch H, de-Miguel S, Paquette A, Hérault B, Scherer-Lorenzen M, Barrett CB, Glick HB, Hengeveld GM, Nabuurs GJ, Pfautsch S, Viana H, Vibrans AC, Ammer C, Schall P, Verbyla D, Tchebakova N, Fischer M, Watson JV, Chen HYH, Lei X, Schelhaas M-J, Lu H, Gianelle D, Parfenova EI, Salas C, Lee E, Lee B, Kim HS, Bruelheide H, Coomes DA, Piotto D, Sunderland T, Schmid B, Gourlet-Fleury S, Sonké B, Tavani R, Zhu J, Brandl S, Vayreda J, Kitahara F, Searle EB, Neldner VJ, Ngugi MR, Baraloto B, Frizzera L, Balazy R, Oleksyn J, Zawila-Niedzwiecki T, Bouriaud O, Bussotti F, Finér L, Jaroszewicz B, Jucker T, Valladares V, Jagodzinski AM, Peri PL, Gonmadje C, Marthy W, O'Brien T, Martin EH, Marshall AR, Rovero F, Bitariho R, Niklaus PA, Alvarez-Loayza P, Chamuya N, Valencia R, Mortier F, Wortel V, Engone-Obiang NL, Ferreira LV, Odeke DE, Vasquez RM, Lewis SL, Reich PB (2016) Positive biodiversity-productivity relationship predominant in global forests. Science 354. doi:10.1126/science.aaf8957

  • Lorenzo P, González L, Reigosa MJ (2010) The genus Acacia as invader: the characteristic case of Acacia dealbata Link in Europe. Ann For Sci 67(1):101. doi:10.1051/forest/2009082

    Article  Google Scholar 

  • Lundgren BO, Raintree JB (1982) What is agroforestry? Agrofor Syst 1:7–12

    Article  Google Scholar 

  • Luu TC, Binkley D, Stape JL (2013) Neighborhood uniformity increases growth of individual Eucalyptus trees. For Ecol Manag 289:90–97

    Article  Google Scholar 

  • Martin PH (1999) Norway maple (Acer platanoides) invasion of a natural forest stand: understory consequence and regeneration pattern. Biol Invasions 1(2/3):215–222. doi:10.1023/A:1010084421858

    Article  Google Scholar 

  • McKelvey K, Noon BR, Lamberson RH (1993) Conservation planning for species occupying fragmented landscapes: the case of the northern spotted owl. In: Kareiva PM, Kingsolver JG, Huey RB (eds) Biotic interactions and global change. Sinauer, Sunderland, MA, pp 424–450 (480 p)

    Google Scholar 

  • Müller J, Hothorn T, Pretzsch H (2007) Long-term effects of logging intensity on structures, birds, saproxylic beetles and wood-inhabiting fungi in stands of European beech Fagus sylvatica L. For Ecol Manag 242(2):297–305

    Article  Google Scholar 

  • Müller J, Mehr M, Bässler C, Fenton MB, Hothorn T, Pretzsch H, Klemmt H-J, Brandl R (2012) Aggregative response in bats: prey abundance versus habitat. Oecologia 169(3):673–684

    Article  PubMed  Google Scholar 

  • Nair PKR (1985) Classification of agroforestry systems. Agrofor Syst 3:97–128. doi:10.1007/BF00122638

    Article  Google Scholar 

  • Neuner S, Albrecht A, Cullmann D, Engels F, Griess VC, Hahn A, Hanewinkel M, Härtl F, Kölling C, Staupendahl K, Knoke T (2015) Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate. Glob Chang Biol 21:935–946

    Article  PubMed  Google Scholar 

  • Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conserv Biol 4(4):355–364

    Article  Google Scholar 

  • O’Hara KL (2016) What is close-to-nature silviculture in a changing world? Forestry 89(1):1–6

    Article  Google Scholar 

  • Ong CK, Black C, Wilson J (2015) Tree-crop interactions: agroforestry in a changing climate. CABI, Wallingford

    Book  Google Scholar 

  • Onyekwelu J, Stimm B, Evans J (2011) Review plantation forestry. In: Günter S, Weber M, Stimm B, Mosandl R (eds) Silviculture in the tropics, vol 8. Springer, Berlin, pp 399–454

    Chapter  Google Scholar 

  • Paul C (2014) Timber-based agrisilvicultural systems to facilitate reforestation in Panama – a silvicultural and economic evaluation. Dissertation, Technische Universität München

    Google Scholar 

  • Paul C, Weber M (2016) Effects of planting food crops on survival and early growth of timber trees in eastern Panama. New For 47(1):53–72. doi:10.1007/s11056-015-9477-5

    Article  Google Scholar 

  • Paul C, Griess V, Havardi-Burger N, Weber M (2015) Timber-based agrisilviculture improves financial viability of hardwood plantations: a case study from Panama. Agrofor Syst 89(2):217–235. doi:10.1007/s10457-014-9755-9

    Article  Google Scholar 

  • Perfecto I, Vandermeer J (2010) The agroecological matrix as alternative to the land-sparing/agriculture intensification model. Proc Natl Acad Sci 107(13):5786–5791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piotto D, Vıquez E, Montagnini F, Kanninen M (2004) Pure and mixed forest plantations with native species of the dry tropics of Costa Rica: a comparison of growth and productivity. For Ecol Manag 190(2–3):359–372. doi:10.1016/j.foreco.2003.11.005

    Article  Google Scholar 

  • Potvin C, Dutilleul P (2009) Neighborhood effects and size-asymmetric competition in a tree plantation varying in diversity. Ecology 90(2):321–327. doi:10.1890/08-0353.1

    Article  PubMed  Google Scholar 

  • Pretzsch H (2005) Stand density and growth of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.). Evidence from long-term experimental plots. Eur J For Res 124:193–205

    Article  Google Scholar 

  • Pretzsch H, Schütze G (2014) Size-structure dynamics of mixed versus pure forest stands. For Syst 23(3):560–572

    Google Scholar 

  • Pretzsch H, Block J, Dieler J, Dong PH, Kohnle U, Nagel J, Spellmann H, Zingg A (2010) Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann For Sci 67:712

    Article  Google Scholar 

  • Pretzsch H, Biber P, Schütze G, Uhl E, Rötzer T (2014a) Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat Commun 5:4967. doi:10.1039/ncomms5967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pretzsch H, Rötzer T, Matyssek R, Grams TEE, Häberle KH, Pritsch K, Kerner R, Munch JC (2014b) Mixed Norway spruce (Picea abies [L.] Karst) and European beech (Fagus sylvatica [L.]) stands under drought: from reaction pattern to mechanism. Trees 28:1305–1321

    Article  CAS  Google Scholar 

  • Pretzsch H, del Río M, Ammer C, Avdagic A, Barbeito I, Bielak K et al (2015) Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. Eur J For Res 134(5):927–947

    Article  Google Scholar 

  • Pretzsch H, Bauerle T, Häberle KH, Matyssek R, Schütze G, Rötzer T (2016a) Tree diameter growth after root trenching in a mature mixed stand of Norway spruce (Picea abies [L.] Karst) and European beech (Fagus sylvatica [L.]). Trees 30:1–13. doi:10.1007/s00468-016-1406-5

    Article  Google Scholar 

  • Pretzsch H, del Rio M, Schütze G, Ammer C, Annighöfer P, Avdagic A, Barbeito I, Bielak K, Brazaitis G, Coll L, Drössler L, Fabrika M, Forrester DI, Kurylyak V, Löf M, Lombardi F, Matovic B, Mohren F, Motta R, den Ouden J, Pach M, Ponette Q, Skzyszewski J, Sramek V, Sterba H, Svoboda M, Verheyen K, Zlatanov T, Bravo-Oviedo A (2016b) Mixing of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) enhances structural heterogeneity, and the effect increases with water availability. For Ecol Manag 373:149–166

    Article  Google Scholar 

  • Rao M, Nair P, Ong C (1997) Biophysical interactions in tropical agroforestry systems. Agrofor Syst 38(1):3–50. doi:10.1023/A:1005971525590

    Article  Google Scholar 

  • Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species – a global review. Divers Distrib 17(5):788–809. doi:10.1111/j.1472-4642.2011.00782.x

    Article  Google Scholar 

  • del Río M, Pretzsch H, Ruíz‐Peinado R, Ampoorter E, Annighöfer P, Barbeito I, Fabrika M (2017) Species interactions increase the temporal stability of community productivity in Pinus sylvestrisFagus sylvatica mixtures across Europe. J Ecol. doi:10.1111/1365-2745.12727

    Google Scholar 

  • Roessiger J, Griess VC, Knoke T (2011) May risk aversion lead to near-natural forestry? A simulation study. Forestry 84:527–537

    Article  Google Scholar 

  • Roessiger J, Griess VC, Härtl F, Clasen C, Knoke T (2013) How economic performance of a stand increases due to decreased failure risk associated with the admixing of species. Ecol Model 255:58–69

    Article  Google Scholar 

  • Scherer-Lorenzen M, Körner C, Schulze E-D (2005) Forest diversity and function. In: Ecological studies, vol 176. Springer, Berlin, p 399

    Google Scholar 

  • Schütz JP (1997) Sylviculture 2. La gestion des forets irrégulières et mélangées. Presses Polytechniques et Universitaires Romandes, Lausanne, 178 p

    Google Scholar 

  • Soares AA, Leite HG, Souza AL, Silva SR, Lourenço HM, Forrester DI (2016) Increasing stand structural heterogeneity reduces productivity in Brazilian Eucalyptus monoclonal stands. For Ecol Manag 373:26–32

    Article  Google Scholar 

  • Tahvonen O, Pukkala T, Laiho O, Lähde E, Niinimäki S (2010) Optimal management of uneven-aged Norway spruce stands. For Ecol Manag 260:106–115

    Article  Google Scholar 

  • Thurm EA, Pretzsch H (2016) Improved productivity and modified tree morphology of mixed versus pure stands of European beech (Fagus sylvatica) and Douglas-fir (Pseudotsuga menziesii) with increasing precipitation and age. Ann For Sci 73:1–15

    Article  Google Scholar 

  • Tobner CM, Paquette A, Reich PB et al (2014) Advancing biodiversity–ecosystem functioning science using high-density tree-based experiments over functional diversity gradients. Oecologia 174:609–621

    Article  PubMed  Google Scholar 

  • Toïgo M, Vallet P, Perot T, Bontemps JD, Piedallu C, Courbaud B (2015) Overyielding in mixed forests decreases with site productivity. J Ecol 103(2):502–512

    Article  Google Scholar 

  • Uhl E, Kölling Ch, Pretzsch H (2014) Überlegungen zur Weiterentwicklung des Ertragskundlichen Versuchswesens in Bayern. In: Bayerische Landesanstalt für Wald und Forstwirtschaft (Hrsg) Das forstliche Versuchswesen in Bayern, LWF Wissen, p 76, 100 S

    Google Scholar 

  • Utschig H, Neufanger M, Zanker T (2011) Das 100-Baum-Konzept als Einstieg für Durchforstungsregeln in Mischbeständen. Allgemeine Forstzeitschrift für Waldwirtschaft und Umweltvorsorge AFZ-Der Wald AFZ 21:4–6

    Google Scholar 

  • Verheyen K, Vanhellemont M, Auge H et al (2016) Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio 45:29–41

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Fang J, Tang Z, Zhu B (2006) Climatic control of primary forest structure and DBH–height allometry in Northeast China. For Ecol Manag 234(1):264–274

    Article  Google Scholar 

  • Webb LJ (1968) Environmental relationships of the structural types of Australian rain forest vegetation. Ecology 49(2):296–311

    Article  Google Scholar 

  • Weber M, Günter S, Aguirre N, Stimm B, Mosandl R (2008) Reforestation of abandoned pastures: silvicultural means to accelerate forest recovery and biodiversity. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R, Caldwell MM, Heldmaier G, Jackson RB, Lange OL, Mooney HA, Schulze E-D, Sommer U (eds) Gradients in a tropical mountain ecosystem of Ecuador, vol 198. Springer, Berlin, pp 431–441

    Chapter  Google Scholar 

  • Zenner EK (2015) Differential growth response to increasing growing stock and structural complexity in even-and uneven-sized mixed Picea abies stands in southern Finland 1. Can J For Res 46(999):1–10

    Google Scholar 

  • Zhang Y, Chen HYH (2015) Individual size inequality links forest diversity and above-ground biomass. J Ecol 103:1245–1252

    Article  Google Scholar 

  • Zobel DB, McKee A, Hawk GM, Dyrness CT (1976) Relationships of environment to composition, structure, and diversity of forest communities of the central western Cascades of Oregon. Ecol Monogr 46(2):135–156

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Pretzsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Pretzsch, H., Knoke, T., Paul, C., Bauhus, J., Forrester, D.I. (2017). Perspectives for Future Research on Mixed-Species Systems. In: Pretzsch, H., Forrester, D., Bauhus, J. (eds) Mixed-Species Forests. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54553-9_12

Download citation

Publish with us

Policies and ethics